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VACUUM TESTS OF INSTRUMENT SIZE GEARS -- EVALUATION 
OF SELECTED GEAR MATERIALS 

By W .  J. Courtney 

SUMMARY 

Eight gear mater ia l s  a r e  evaluated f o r  wear character is t ics . ,  
Brief descr ip t ions  are  given of the  four-square gear t e s t  f i x t u r e s ,  
master gear  arrangements, and instrumentation f o r  the measurement 
of wear ra tes .  Involute p r o f i l e  (368) and cycloidal  p r o f i l e  (32) 
gears were used. 

Four t e s t  series were conducted. The f irst  series cons i s t s  
of involute  gears tes ted a t  a constant speed (1800 rpm) and con- 
s t a n t  torque load (20 oz- in) .  These tests include 14 atmospheric 
and 42 vacuum tests.  Evaluations w i t h  224 involute  gears i nd ica t e  
t h a t  the  n i t r i d e d  n i t r a l l o y  and 440C s t a i n l e s s  s teel  material com- 
b ina t ions  operate f o r  the  prescribed t i m e  (720 h r )  i n  both lab- 
ora tory  and vacuum atmosphere. Martin hard coated 7075T6 aluminum 
a l l o y  i s  paired with n i t r i d e d  n i t r a l l o y  and i n  another combination 
with C1085 s tee l  ( s i l v e r  p la ted  and lubr ica ted  with i n  s i t u  molyb- 
deni te  (MoS2). These combinations operate  f o r  the prescribed t i m e  
i n  vacuum only. I n  laboratory ambient evaluat ions,  n i t r i d e d  n i t r a l -  
loy and Phosphor bronze combined with 15 percent MoS2 matrix material 
operates  f o r  the  prescribed t i m e .  

The second series of t es t s  i s  performed on 32 carburized C1020, 
n i t r i d e d  n i t r a l l o y ,  and 440C s t a i n l e s s  s t ee l  gears of cycloidal  
p r o f i l e .  Six tes ts  a re  conducted i n  vacuum and two i n  atmosphere. 
The r e s u l t s  i nd ica t e  t h a t  these gears w i l l  not  operate f o r  720 h r  
i n  vacuum a t  e i t h e r  10 o r  20 oz-in.  torque load and 1800 rpm with- 
out accumulating g rea t e r  than 10 percent wear. The atmospheric 
t es t s  show similar r e s u l t s  a t  20 oz-in.  torque load and 1800 rpm. 
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The r e s u l t s  of the t h i r d  series are  inconclusive because of 
the  ni t rogen enrichment of t he  n i t r i d e d  n i t r a l l o y  gears  which 
caused chipping. Forty n i t r i d e d  n i t r a l l o y  and 40 s t a i n l e s s  s teel  
440C gears  of involute  p r o f i l e  were t e s t e d  a t  10, 20 and 30 oz-in.  
torque load and speeds of both 900 and 1800 rgm. 

I n  the  fou r th  series 16 unlubricated gears (n i t r ided  n i t r a l l o y  
and 440C s t a i n l e s s  s teel)  and 44 lubr ica ted  gears ( n i t r i d e d  n i -  
t r a l l o y  and Martin hard coated 7075T6) are  compared using 3 bound- 
a r y  f i l m  type lubr icants .  Lubricated gears  a r e  subjected t o  1800 
rpm, 20 oz-in. torque load; unlubricated gears a r e  operated a t  
900 o r  1800 rpm, and a t  10,  20 o r  30 oz-in.  torque load. 

INTRODUCTION 

The wear c h a r a c t e r i s t i c s  of se lec ted  gear materials are 
evaluated i n  terms of a p p l i c a b i l i t y  f o r  vacuum use. Mater ia l  
s e l ec t ion  i s  based on the requirement of unlubricated o r  dry 
f i lm  (M0S2) lubr ica ted  gears.  The l i t e r a t u r e  shows t h a t  very 
hard mater ia l s  o r  materials with hard surfaces  have extended 
wear l i v e s .  Also ,  hard surfaced mater ia l s  are  pr imari ly  i n t e r -  
m e t a l l i c  compounds, c h a r a c t e r i s t i c a l l y  r e s i s t a n t  t o  cold welding 
i n  the space environment. To meet the need f o r  a corrosion re -  
s i s t a n t  material, a through-hardened 440C s t a i n l e s s  s t e e l  i s  
evaluated. A l i g h t  anodized 7075T6 aluminum a l l o y  i s  used as a 
b a s i s  f o r  comparison. A through-hardened beryll ium copper a l l o y  
i s  included f o r  i t s  nonmagnetic, e l e c t r i c a l ,  and thermal conduc- 
tance proper t ies .  The e i g h t  materials se lec ted  a r e  l i s t e d  i n  
Table I .  

These ma te r i a l s  a r e  evaluated f o r  wear r a t e s  and too th  sur- 
face  degeneration using gears  i n  four-square gear tes ters  a t  
speeds of  900 and 1800 rpm under 10, 20 ,  and 30 oz-in. torque 
loads,  which correspond t o  contact  s t r e s s e s  of -30 000, 60 000 
and 90 000 p s i .  Each tes t  i s  continued u n t i l  the gear tooth pro- 
f i l e  i s  reduced by -10 percent o r  u n t i l  720 h r  of continuous 
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Table I 
GEAR MATERIALS SELECTED FOR 

WEAR EVALUATIONS 

Mate r i a l  

I 

I1 

I11 

I V  

V 

VI 

V I 1  

V I 1 1  

Descr ip t ion  

Carburized C1020 S tee l  
(case  depth 0.002 t o  0.003 i n . )  

N i t r i d e d  N i t r a l l o y  135 Modified,Steel 
(case  depth 0.002 t o  0.003 i n . )  

Beryll ium Copper Alloy 25 
( h e a t  t r e a t e d  t o  Rc41-44) 

Deep Anodized 7075T6 Aluminum 
(Martin hard coated,  case depth 0.002 
t o  0.003 i n . )  

440C S t a i n l e s s  S t e e l  
( h e a t  t r e a t e d  t o  Rc55-60) 

Phospor Bronze 
(15 percent  M0S2 ma t r ix  material) 

(21085 S tee l  
( h e a t  t r e a t e d  t o  Rc50, s i l v e r  p l a t ed  0.0001 i n  
wi th  E3C Molykote f i lm)  

Light  Anodized 7075T6 Aluminum Alloy 

* The case depth was between 0.005 and 0.007 i n .  f o r  t he  
second series of n i t r i d e d  gears .  
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running elapses .  The t i m e  l i m i t  i s  based on economic considera- 
t i ons .  This t e s t i n g  program c o n s t i t u t e s  a f i r s t  order s e l ec t ion  
and evaluat ion of mater ia l s  e The following comparisons a r e  noted: 

o A t  20 oz-in.  torque load and 1800 rpm, only 
the n i t r i d e d  n i t r a l l o y  vs 440C s t a i n l e s s  
s t e e l  gears ( involu te  p r o f i l e )  ran f o r  720 
h r  without accumulating g r e a t e r  than 10 per- 
cen t  wear i n  both atmospheric and vacuum 
environmental t es t s .  

e Beryllium copper a l l o y  25 i s  undesirable f o r  
use a s  an  involute  gear material a t  20 oz- in ,  
torque load and 1800 rpm, e i t h e r  i n  the lab- 
ora tory  o r  vacuum environment. 

o Both l i g h t  anodized 7075T6 aluminum and 
Phospher bronze with 15 percent MoS2 matrix 
possess inadequate mechanical proper t ies  a s  
an  involute  p r o f i l e  t o  support the required 
load. 

e The cyc lo ida l  p r o f i l e  performs unsa t i s fac-  
t o r i l y  with a l l  th ree  ma te r i a l s ,  440C, 
C1020 and n i t r a l l o y .  

DESIGN AND CONSTRUCTION OF THE TEST FACILITY 

The f i r s t  major phase of the program w a s  the design and con- 
s t r u c t i o n  of a t e s t  f a c i l i t y  f o r  evaluat ing materials using in-  
strument s i z e  gears  under both vacuum and laboratory ambient en- 
vironmental condi t ions.  Since there  were 224 gears and a t o t a l  
of 14 d i f f e r e n t  mater ia l  combinations t o  be evaluated, i t  w a s  f e l t  
t h a t  a t e s t  f a c i l i t y  capable of simultaneously t e s t i n g  32 gears 
of d i f f e r e n t  material combinations would be adequate f o r  completing 
the  program i n  a maximum period of 7 mo, based on the requirement 
t h a t  each t e s t  be conducted f o r  a maximum of 720 h r .  This period 
does not  include the  changeover and setup t i m e  between t e s t s .  Two 
separa te  t e s t i n g  apparatus were designed, one f o r  use i n  the lab- 
ora tory  atmosphere environment (Figure 1) and the  o ther  f o r  the 
vacuum environment (Figure 2) .  
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Figure 1 Apparatus f o r  Laboratory Ambient Gear Wear Tests  



Four-Square 
Test R i g  

Figure 2 Test Apparatus for Vacuum Environment 
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Vacuum System 

Of a l l  the  space environmental parameters a f f e c t i n g  the  opera- 
t i o n  of mechanical components, the  "hard vacuum'' i s  one of the  most 
i n f l u e n t i a l .  Reproduction of t he  exact dens i ty ,  molecular f l u x  and 
composition of t he  environment i s  e s s e n t i a l  f o r  meaningful tes ts  
but i f  the fundamental i n t e r r eac t ions  can be predic ted ,  these fac-  
t o r s  can be accounted f o r .  However, t o  reduce the  i n t e r a c t i o n  of 
mechanical wear surfaces  with the impinging gas species t o  a neg- 
l i g i b l e  l e v e l ,  i t  i s  necessary t o  reduce the molecular f l u x  t o  a 
l e v e l  a t  which the  monolayer absorpt ion i s  very long compared t o  
the t i m e  f o r  one revolut ion of a gear.  Thus, f o r  a gear  speed of 
1800 rpm, a chamber pressure of 5 x t o r r  i s  used t o  provide 
space-vacuum simulation. The complete vacuum system used (Figure 3 )  
cons i s t s  of:  

A 14-in. diam and 12-in. high s t a i n l e s s  
s t e e l  vacuum chamber with four  view p o r t s ,  
one 14 i n .  Wheeler f lange,  three elec- 
t r i c a l  feedthroughs, one mechanical r o t a r y  
feedthrough, and a 6 i n .  pump manifold with 
two roughing valves . 
Two Varian Vac Sorb roughing pumps. 

A Varian water cooled t i tanium sublimation 
Pump * 

One 500 l i t e r / s e c  Vac Ion pump. 

The vacuum chamber has i t s  bottom p l a t e  fabr ica ted  with e igh t  
cup-shaped depressions t o  accommodate the  magnets of each four- 
square t e s t  f i x t u r e  comprising one-half of the  magnetic dr ive.  
The o t h e r  ha l f  i s  mounted on separa te  motors assembled outs ide and 
d i r e c t l y  under each tes t  r i g .  A manual mechanical ro t a ry  feed- 
through i n  the cen te r  of t he  bottom p l a t e  i s  used t o  pos i t i on  the  
master gear mechanism f o r  per iodic  wear measurements. 

7 



Figure 3 Ultrahigh-Vacuum System for Gear Wear Studies 



Four-Square Test Rig 

A four-square gear  t e s t i n g  configurat ion was se lec ted  t o  f u l -  
f i l l  the  cont rac t  requirement t h a t  a l l  mater ia l s  be t e s t ed  under 
constant  load and speed. The u t i l i z a t i o n  of the four-square 
arrangement i s  considered i d e a l  f o r  t e s t i n g  gears i n  a vacuum en- 
vironment s ince i t  permits operat ion of the gears under the  de- 
s i r ed  loads without imposing strenous requirements on mechanical 
vacuum chamber penetrat ions.  

A four-square gear  tes ter  i s  a t e s t  apparatus which allows a 
torque load t o  be appl ied t o  two s e t s  of t es t  gears .  The four- 
square t e s t  r i g  designed and used on t h i s  program i s  shown i n  
Figure 4. The d e s i r e d  torque load i s  obtained with the  amount of 
t w i s t  appl ied t o  the  torque spr ing used t o  couple the two shor t  
sha f t s  together .  These sha f t s  a r e  supported i n  the l a rge r  bearing 
blocks which contain a double set  of s i z e  R-4 precis ion b a l l  
bearings.  A s e t  of 55 t ee th  t e s t  gears i s  mounted on these two 
sha f t s .  These gears  are  mated with a s e t  of 56 t ee th  t e s t  gears 
mounted on the main dr ive  sha f t  supported i n  the  small bearing 
blocks which contain s ing le  bearings.  The bearings used i n  the 
four-square r i g  a r e  New Hampshire SR4 PBll b a l l  bearings with re- 
t a ine r s  of Salox M mater ia l .  The bearings a r e  a x i a l l y  loaded 
a s  discussed i n  Appendix A .  

The o r i g i n a l  design ca l l ed  fo r  t he  main dr ive sha f t  t o  be 
connected by a f l e x i b l e  to r s iona l  coupling t o  the sha f t  containing 
the  dr iven magnet, a s  ind ica ted  i n  Figure 4 .  Rotation of the 
f l e x i b l e  to r s iona l  coupling could be used t o  ind ica te  the torque 
required t o  dr ive  the r i g .  However, preliminary tests ind ica ted  
t h a t  t he  arrangement caused f r e t t i n g  corrosion of the sha f t s .  
Therefore, i t  w a s  replaced by a s t i f f  spr ing allowing f o r  s l i g h t  
misalignment i n  the assembly. This reduces but  does not e l iminate  
the v ib ra t ion  induced f r e t t i n g  noted i n  two locat ions:  between 
the inner  races  of t he  bearings and the s h a f t s ,  and a lower degree 
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Figure 4 Four-Square Test Fixture 
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between the  gears  and the  sha f t s  (under the  c o l l a r  clamp). 
f r e t t i n g  i s  due t o  the  v ib ra t iona l  loading induced by the  bellows 
coupling. 

This 

The l i f e  of t he  bearings i s ,  i n  many cases ,  l i m i t e d  t o  one 
t e s t .  When a gear  set  i s  removed from the f i x t u r e  the  bear ing i s  
destroyed due t o  the  extreme a x i a l  loads required t o  remove the  
sha f t  from the bearings.  Preliminary tes ts  a l s o  ind ica t e  the 
bear ing blocks must be pinned i n  place t o  maintain a fixed center  
d i s tance .  By a c t u a l  vacuum t e s t  i t  i s  found t h a t  the  cen te r  d i s -  
tance required must be equal t o  the sum of the p i t ch  r a d i i  of the  
mating t e s t  gears ,  p lus  the  t o t a l  composite e r r o r  (0.0005 in . )  
p lus  0.002 i n e  This  dis tance i s  0.001 i n .  g rea t e r  than recommended 
by AGMA f o r  qua l i t y  No. 1 2  gears  and i s  necessary because of the 
thermal expansion of the t e s t  gears which occurs i n  vacuum. I n  
addi t ion  t o  the  four-square t e s t  f i x t u r e s  and dr ive  motors, both 
apparatus include a master gear mechanism. The four-square tes t  
r i g s  i n  the vacuum apparatus a r e  posi t ioned around the  master gear 
mechanism such t h a t  a l l  t e s t  gears a r e  a t  the same r a d i a l  d i s tance  
from a v e r t i c a l  reference cen te r l ine  which coincides p rec i se ly  
with the  cen te r l ine  of the  ro t a t ion  of master gear mechanism. 

Master Gear Arrangement f o r  Gear Wear 
Measurement i n  Vacuum 

A spring-loaded master gear* arrangement i s  used i n  the  tes t  
f a c i l i t y .  This  arrangement (Figure 5) enables per iodic  approxima- 
t i o n  of the  degree of wear on the t e s t  gears  i n  vacuum. Most gear  
manufacturers u t i l i z e  t h i s  technique i n  determining the  prec is ion  
of gears .  The arrangement bas i ca l ly  cons i s t s  of a spring-loaded 
u l t r ap rec i s ion  master gear o r  a prec is ion  gear of known p r o f i l e  
mating with a t es t  gear.  On revolving the  combination and prec ise ly  

* 
These so-cal led "master gears", a s  discussed l a t e r ,  are  gears  
with rec tangular  t ee th .  
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measuring the  va r i a t ions  i n  the center  dis tance between the master 
gear and the t e s t  gear ,  accurate  measurements of tooth- to- tooth 
composite tolerance (TCE) and t o t a l  composite tolerance can be 
made. 

** 
The master gear i s  mounted i n  a U-shaped bracket  prec ise ly  

s l i d i n g  and spring-loaded within another ro t a ry  bracket  which can 
be moved v e r t i c a l l y  and a l s o  revolved t o  br ing the master gear 
i n t o  contact  with any of the t e s t  gears (Figure 6 ) .  While mating 
with a slowly revolving t e s t  gear ,  the var ia t ions  i n  the center  
dis tance a r e  measured by a l i n e a r  var iab le  displacement t rans-  
ducer (LVDT) which senses the movements of the U-shaped bracket  
supporting the master gear.  The purpose of t h i s  arrangement i s ,  
therefore ,  twofold: (1) t o  make per iodic  TCE measurements, and 
(2 )  t o  determine the amount of wear on the  tooth p r o f i l e  by 
measuring changes i n  a reference dis tance between the master gear 
and the  t e s t  gear.  I n  Figure 5 the individual  LVDT'S are mounted 
on a ro t a ry  feedthrough mechanism. A prec is ion  indexing arrange- 
ment i s  a l s o  provided on the  master gear mechanism such t h a t  the 
master gear can be accurately indexed f o r  repeated monitoring of 
each t e s t  gear p r o f i l e .  Although t h i s  method of monitoring gear 
wear i n  the  vacuum chamber appears qu i t e  s t ra ightforward,  many 
problems and so lu t ions  t o  each a r e  discussed i n  the following 
writeup. 

- -  

I n  the i n i t i a l  design, u l t raprec is ion  master gears  of the 
same diametral  p i t c h  as  the t e s t  gear were selected.  However, t h i s  
w a s  found s a t i s f a c t o r y  f o r  measuring wear of up t o  only 1 o r  2 
percent of the t e s t  gear ,  because of in te r fe rence  between the  

**Tooth-to-tooth composite tolerance i s  defined as the allowable 
va r i a t ion  i n  center  dis tance when a gear i s  ro ta ted  ( i n  t i g h t  
mesh with a master gear) through any increment of 360"/N (N = 
number of t e e t h  i n  gear under inspect ion) .  
erance i s  defined as  the allowable va r i a t ion  i n  center  dis tance 
when a gear i s  ro ta ted  ( i n  t i g h t  mesh with a master gear) one 
complete revolut ion.  (This includes the e f f e c t s  of var ia t ions  
i n  a c t i v e  p r o f i l e ,  lead,  p i t ch ,  tooth thickness  and run-out.) 

Tota l  composite t o l -  
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Figure 6 Master Gear Arrangement f o r  
Laboratory Ambient Environment 
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(Figure 7b) t o  remove f u r t h e r  in te r fe rence .  Figure 8 i l l u s t r a t e s  
the standard over-pin measurement used t o  maintain wear i n  the 
atmospheric t e s t s .  

15 

the p i t c h  rad ius ,  whereby during measurements the rectangular  tooth 
makes contact with the  t e s t  gear a t  o r  below i t s  p i t c h  radius .  
o ther  words, the changes i n  center  dis tances  were r e f l ec t ed  only 
by the amount of wear on the dedendum port ion of the t e e t h  on the 
t e s t  gear. 

I n  

Careful s tud ie s  of a c t u a l  wear p r o f i l e s  on severa l  
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AB i s  determined by the  amount of wear on the  t e s t  gear t e e t h ,  
The change i n  dimension AB i s ,  therefore ,  the measure of the  
amount of wear on the  t e s t  gear and i s  indicated by the  change i n  
output of the d i r e c t  cur ren t  LVDT transducer.  I n  o the r  words, 
change i n  center  d i s tance  BC i s  measured ins tead  of change i n  AB. 
This approach would work provided AC were always constant .  
ever ,  due t o  the lack of convective hea t  t r a n s f e r  i n  the  vacuum 
chamber, a considerable amount of h e a t  generated i s  t r ans fe r r ed  
t o  d i f f e r e n t  sec t ions  f o r  the t e s t  apparatus ,  e s t ab l i sh ing  thermal 
grad ien ts  t h a t  cause unpredictable thermal expansion. Thermal 
expansion of the  base p la te  of the  apparatus on which a l l  four- 
square t es t  f i x t u r e s  a r e  mounted would r e f l e c t  a change i n  dimen- 
s ion  AC and cause ser ious  e r r o r  i n  the  wear measurement. This 
problem w a s  detected by ser ious  d r i f t s  i n  transducer output showing 

How- 

t h a t  AB w a s  changing even when the t e s t  gear did not have any wear, 
I n  order  t o  compensate completely f o r  any change i n  physical  d i -  
mensions due t o  temperature r i se ,  a d i f f e r e n t  method of measurement 
was used. This  method i s  shown i n  Figures 9b and c .  Here the 
master gear  has ,  i n  add i t ion  t o  i t s  rectangular  t e e t h ,  a port ion 
of i t s  circumference without any tee th .  Figure 9b shows the  nor- 
mal measurement a s  i n  Figure 9a where the output of the  transducer 
i nd ica t e s  AB. However, i n  Figure 9c the too th l e s s  port ion of  the 
master gear  mates with the outs ide diameter of the tes t  gear ind i -  
cated by the  transducer a s  A'B'. The important thing t o  note here  
i s  t h a t  although AB and A'B' a r e  subjec t  t o  d r i f t s  due t o  thermal 
expansion causing AC t o  d r i f t ,  the d i f fe rence  AB-A'B' a t  any t i m e  
i s  independent of changes i n  AC,  and i s  only dependent on the  
amount of gear wear. 
occurs on the outs ide  circumference of the tes t  gear.  This approach 
was adopted on a l l  tes ts  conducted i n  vacuum environment, so t h a t  
ins tead  of making j u s t  one measurement of AB, one a d d i t i o n a l  measure- 
ment, A'B', was made f o r  every tes t  gear .  The d i f fe rence  AB-A'B' 
i s  used as an ind ica t ion  of the  amount of wear. 

This i s  based on the  assumption t h a t  no wear 
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Another problem arose  when the equilibrium temperature of sev- 
e r a l  components i n  t he  vacuum test  r i g s  w a s  measured using a con- 
t a c t  thermocouple. These measurements indicated body gear tempera- 
t u re s  of -180°F and upper bearing block temperatures of 145°F. 
However, these temperatures are only approximate because of the  
inf luence of contact  pressure on the  a c t u a l  reading. 
of t he  gear  temperature increase based on the  measured change i n  
gear  dimensions indicated t h a t  t he  gears  were c lose r  t o  275°F. 
The loca t ion  of bear ing blocks with respect  t o  the  gears  i s  shown 
i n  Figure 40 of Appendix A .  
wear measurement technique i s  included i n  Appendix B. 

Calculat ion 

A complete descr ip t ion  of t he  gear  

Gear Wear Measurement i n  the  Laboratory Environment 

Per iodic  wear measurements are  made of t es t  gears i n  the  lab- 
ora tory  t e s t  r i g  a s  shown i n  Figure 8. A 0.039 in .  diam p in  
arrangement i s  employed f o r  quick measurement of wear by a simple 
over-pin measurement with a micrometer. A ca l ib ra t ion  curve i s  
generated by p l o t t i n g  over-pin measurements f o r  a number of worn 
gears  aga ins t  t he  a c t u a l  percentage wear occurring a t  t he  p i t ch  
diameter, as  determined with the  toolmaker's microscope technique. 
By t h i s  method, the  f i n a l  determination of t he  percentage wear 
which occurs during the  gear  wear t es t s  i s  made with a toolmaker's 
microscope a f t e r  t he  gears a r e  removed from the tes t  r i g s .  This i s  
accomplished with a microscope with a micrometer t ab le  movement 
having an  accuracy of 0.0001 i n . ,  i n  two perpendicular d i r ec t ions .  
The accuracy o r  r epea tab i l i t y  of these measurements i s  b e t t e r  than 
f 0.0002 i n . ,  which i s  equivalent t o  f 0.6 percent wear a t  t he  
p i t c h  r ad ius ,  It  w a s  found t h a t  a decrease i n  the  over-pin measure- 
ment of  0,012 i n .  i s  equivalent t o  ,10 percent wear a t  the  p i t ch  
l i n e  of t he  gear.  

The se l ec t ion  of a 10 percent (0.0032 in . )  decrease i n  the  
width of the  t e s t  gear  a t  the  p i t c h  radius  as  an ind ica t ion  of 10 
percent reduction i n  too th  p r o f i l e  was made a f t e r  the  preliminary 
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r e s u l t s  from the  i n i t i a l  wear tests were ava i l ab le  f o r  c o r r e l a t i o n  
checks. These r e s u l t s  show t h a t  LO percent reduction i n  tooth 
p r o f i l e  cannot always be accura te ly  predicted.  
wear i s  determined by a c t u a l l y  measuring the  t o o l  p r o f i l e  a f t e r  
the tes t  i s  completed, 

The degree of 

GEAR MATERIAL SPECIFICATIONS, PROCUREMENT AND FABRICATION 

Of the  e i g h t  ma te r i a l s  se lec ted  f o r  evaluat ion and presented 
i n  Table I ,  beryll ium copper a l l o y  25 (material 111) was o r i g i n a l l y  
spec i f ied  a s  Sintered Aluminum Powder (SAP). However, due t o  the  
unava i l ab i l i t y  of a s in t e red  aluminum powder gear mater ia l  with 
the  desired oxide content ,  the s u b s t i t u t i o n  was made. 

Involute  gears  were used i n  th ree  sets  of evaluat ion t e s t i n g .  
The o r i g i n a l  con t r ac t  spec i f ied  14 d i f f e r e n t  combinations using 
the e igh t  mater ia l s .  Subsequent cont rac t  modifications w e r e  con- 
cerned with f u r t h e r  t e s t i n g  of involute  gears ;  80 gears fabr ica ted  
from n i t r i d e d  n i t r a l l o y  and 440C s t a i n l e s s  s tee l  were used i n  one 
subset ;  and 60 gears  fabr ica ted  from n i t r i d e d  n i t r a l l o y ,  440C 
s t a i n l e s s  s tee l  and Martin hard coated 7075T6 aluminum a l l o y  com- 
pr i sed  another subset .  The 7075116 gears  and t h e i r  mating n i t r i d e d  
n i t r a l l o y  gears were lubr ica ted .  

During the  tes t  of the  32 cyc lo ida l  p r o f i l e  gears, 8 carburized 
C1020, 1 2  n i t r i d e d  n i t r a l l o y  and 1 2  s t a i n l e s s  s tee l  440C gears  were 
evaluated. These included the  following combinations: 

n i t r i d e d  n i t r a l l o y  vs 440C s t a i n l e s s  s t e e l  
440C s t a i n l e s s  steel  vs  carburized C1020 
n i t r i d e d  n i t r a l l o y  vs carburized (21020 
n i t r i d e d  n i t r a l l o y  v s  n i t r i d e d  n i t r a l l o y  

The order  of t e s t i n g  the  involu te  and cyc lo ida l  gears w a s  as  follows: 
the 224 involute  gear s e t  was evaluated f i r s t ;  the  32 cyc lo ida l  
gears were t e s t ed  second; 80 involu te  n i t r a l l o y  with 440 s t a i n l e s s  
s t e e l  followed; and l a s t ,  the  60 involu te  gears ( n i t r a l l o y ,  440C 
and 7075116 aluminum) gears  were t e s t ed .  
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Speci f ica t ions  

The spec i f i ca t ions  followed f o r  manufacture of involute  and 
cyc lo ida l  gears  are given i n  Table 11. The cyc lo ida l  gears  do 

- not  possess tolerances equivalent t o  those of the involute  gears 
evaluated during the  study. The primary reason f o r  t h i s  d i f fe rence  
i s  the  lack of adequate prec is ion  gr inding equipment f o r  f i n a l  
grinding of t he  cyc lo ida l  p r o f i l e  following heat  treatment.  There- 
fo re ,  the  cyc lo ida l  gears  are  not ground a f t e r  heat  treatment,  but 
ins tead  are  t e s t ed  w i t h  t he  as-hobbed and hea t - t rea ted  tolerances.  

The problem of in t e r f e rence  due t o  i n s u f f i c i e n t  backlash re- 
quired the  inac t ive  face  of each 0.125 i n .  wide cyc lo ida l  gear  t o  
be lapped t o  provide backlash. The o r i g i n a l  unlapped and lapped 
p r o f i l e s  of  a C1020 cyc lo ida l  gear  are  shown i n  Figure 10. 

Mater ia l  Procurement and Gear Fabricat ion 

During the  i n i t i a l  procurement of ma te r i a l s ,  a review of ex- 
i s t i n g  manufacturing procedures (1965) f o r  prec is ion  gears ,  AGMS 
No. 1 2  q u a l i t y ,  indicated t h a t  gears of a l l  o r i g i n a l l y  spec i f ied  
mater ia l s  (except those of Materials V I  and 111 (SAP) would re- 
qui re  f i n i s h  grinding a f t e r  heat  and/or surface treatments.  A t  
t he  t i m e  we located three  companies with adequate f a c i l i t i e s :  

Aero Gear and Tool Corp. 
L i t t l e  Ferry,  N .  J .  
Riley Gear Corp. 
North Tonawanda, N .  Y.  
Equitable Engineering Co. 
De t ro i t ,  Mich. 

Mater ia l  problems encountered i n  the gear f ab r i ca t ion  a r e  of pa r -  
t i c u l a r  i n t e r e s t  e spec ia l ly  when the  various hardened surfaces  a r e  
considered. The problem areas w i l l  be considered individual ly .  
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Table I1 
SPECIFICATIONS FOLLOWED FOR MANUFACTURE OF 

INVOLUTE AND CYCLOIDAL GEARS 

Involute Gears Cycloidal Gears 

Classification No. 1 2  Standard BS 978, Part 2 
I tem Specification: AGMA Specification: Brit ish Cycloidal 

Diame t r a  1 Pitch 
Pressure Angle, deg 
Too th-To-Too th  Composite 
Tolerance, in .  
Total Composite Tolerance, i n  
Backlash 

Number of Teeth 
Face Width, in .  

Pitch Diameter, in .  

48 * 

20 deg 
0.0003 

0.0005 
Designation "D" (backlash per 
mesh of 0.0003 to  0.001 in.)  
55, 56 
0.187 f 0.005 
0.125 f 0.005 
1.1458 + 0.0000, 1.1667 + 0.0000 - 0.0007, - 0.0007 

48 

55, 56 
0.187 f .005, 0.125 f .005 

1.1458 + .OOOO, 1.1666 + .OOOO 
- 0.0007, - .0007 
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w 

Contacting Surface 

Figure 10 Cyclo ida l  P r o f i l e  of  0.125 in. C1020 Gear 



KLtrid.ed, n,it,rallo,y. ,g,ea~r~s*. - A problem encountered during the 
f ab r i ca t ion  of the n i t r i d e d  n i t r a l l o y  gears f o r  the second series 
of involute  p r o f i l e  t e s t s  occurred when photomicrographs of these 
gears indicated a marked d i f fe rence  between second s e r i e s  gears 
and the n i t r i d e d  gears used f o r  the f i r s t  s e r i e s  of involute  gear 
t e s t s  (Figures 11 and 12). The l i g h t  colored area between the  
outer  t h i n  white layer  and the c h a r a c t e r i s t i c  dark n i t r ided  matrix 
which appears i n  Figures 12a and b was not presented i n  the f i r s t  
s e r i e s  (Figure 13) .  

Discussion with I I T R I ' s  meta l lurg is t s  and commercial heat  
t r e a t e r s  (Lingbergh Heat Treat)  revealed tha t  i n  production n i -  
t r i d ing ,  var ia t ions  i n  the percentage of dissociated ammonia pre- 
sen t  during the i n i t i a l  n i t r i d i n g  cycle can cause t h i s  condition. 
The percentage of dissociated ammonia i s  manually control led,  and 
f luc tua t ions  of from 5 t o  8 percent a r e  not uncommon. Such a grey 
layer  i s  normally caused by a low percentage of dissociated ammonia 
during the  f i r s t  cycle  which allows a nitrogen enriched layer  t o  
form below the normal white coat .  A s  mentioned, t h i s  type of for -  
mation i s  primarily a function of the l e v e l  of dissociated ammonia 
present during the f i r s t  cycle of the  two-stage n i t r i d i n g  process; 
but  i s  a l s o  influenced by the durat ion of each cycle.  However, 
a l l  these parameters a r e  influenced by the amount of specimen s u r -  
face exposed i n  the furnance. 

The company t h a t  performed the heat  t r e a t i n g  (L & R Metal 
Treating of New Jersey)  uses a two-stage flow process. The f i r s t  
cycle cons i s t s  of a 5 h r  period with 15 t o  25 percent dissociated 
ammonia present  (manually adjusted a t  1 / 2  h r  i n t e rva l s )  a t  975°F. 
The second s tage cons i s t s  of 3 h r  a t  1050°F and -83 percent d i s -  
sociated ammonia. 

I t  should be remembered t h a t  n i t r i d i n g  i s  not an exact and 
well-defined technique using ex i s t ing  production equipment and 
p rac t i ce .  
of the c r i t i c a l  parameters. 

Good consistency can only be achieved by ca re fu l  cont ro l  
This was confirmed by the f a c t  t h a t  
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Etch: 2 percent N i t a l ,  50X Magnification 
(a) Nitr ided Gear Tooth with Chipped Tip 

Etch: 2 percent N i t a l ,  250X Magnification 
(b) Tip of Chipped Nitr ided Gear 

Figure 11 Second Test Ser ies  Showing Chipping 
of Nitr ided Ni t ra l loy  Involute  Gears 
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Wear A r e a  

White Laye 

Etch: 2 percent Nital, 50X Magnification 

Figure 12 First Test Series Showing Approximately 
Correct Thickness of Nitriding 
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(loox Magnification) 

Figure 13 Microstructure of Phosphor Bronze 
(15 percent MoS2 matrix) 
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the  two s e r i e s  of n i t r i d e d  gears used i n  the  program were fab- 
r i ca t ed  by the  same companies with t h e  same spec i f ica t ions ,  but  
d i f f e r e n t  n i t r i ded  cases r e s u l t e d .  When the process was control led 
more ca re fu l ly ,  i n  the  f ab r i ca t ion  of a t h i r d  s e t  of n i t r i ded  n i -  
t r a l l o y  gears ,  an acceptable case depth resu l ted .  

Mart,in har,d, coa t,ed 7,07,5T6, aluminum al,lo,y. - These a luminum 
a l l o y  gears a l s o  exhibited e r r a t i c  r e s u l t s  i n  case depth due t o  
process cont ro l  problems. I n  both cases i t  was found advisable 
t o  determine the case depth with sample coupons, both p r i o r  t o  the 
a c t u a l  gear surface treatment and a s  a t es t  coupon during the 
a c  tua 1 processing. 

Sin,t,ered ma t,e,r,ia,l,s. - Evaluation of SAP samples indicated 
they were very c lose  t o  the desired theo re t i ca l  densi ty ,  but 
lacked s u f f i c i e n t  aluminum oxide content.  Therefore, a s  d i s -  
cussed previously,  t h i s  mater ia l  was replaced by beryllium copper 
a l l o y  25, hea t  t r ea t ed  t o  Rc41 - 44. 

Figure 13 shows a microstructure of one o f  the samples. The 
specimen was diamond polished and unetched. The porosi ty  of the 
mater ia l  can be e a s i l y  seen i n  the s t ruc tu re .  The grey a reas  in- 
d i ca t e  pores o r  places where MoS2 was pulled out during the pol- 
ishing process. No attempt was made t o  estimate the  MoS2 content 
from the  microstructure study; however a f a i r l y  good d i s t r i b u t i o n  
of MoS2 i s  seen. Chemical ana lys i s  of these specimens showed the  
M0S2 content was -6.90 percent by weight. 
content ,  assuming 15 percent i n  the specimen, would be 11 .2  percent. 
Therefore, t h i s  means the specimens were impregnated t o  only 9.25 
percent MoS2. Therefore, a Phosphor bronze matrix with a 15 pe r -  
cent (by volume) MoS2 impregnation w a s  requested. 

The theoreticalMoS2 
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METHOD OF TESTING 

The 224  involute  gears a r e  arranged t o  f a c i l i t a t e  the running 
of each t e s t  gear aga ins t  another gear of a d i f f e ren t  mater ia l .  
Thus, 14 d i f f e r e n t  mater ia l  combinations a r e  evaluated. One run 
i s  made i n  atmospheric environment with each combination, and 
three  runs are made i n  vacuum. F i f ty - s ix  such individual  tes ts  
a r e  conducted using the four-square gear t e s t e r s  previously des- 
cribed e 

The s tud ie s  conducted i n  vacuum are  ca r r i ed  out i n  an ion 
-8 pumped vacuum environment a t  a pressure of less than 5 x 10 

t o r r ,  a speed of 1800 rpm, and a 20 oz-in. torque load; the  lab- 
oratory tes ts  a r e  conducted a t  the  same speed and torque load. 

P r i o r  t o  i n i t i a t i o n  of the vacuum t e s t s  a s e r i e s  of t rans-  
d u c e r  measurements i s  made on each t e s t  using the procedure des- 
cr ibed i n  Appendix B. These i n i t i a l  measurements a r e  used i n  
conjunction with per iodic  readings taken during the  test period 
t o  obta in  a h i s t o r y  of the  gear wear process u n t i l  g rea t e r  than 
10 percent wear occurs a t  the p i t c h  l i n e  of the t e s t  gear.  The 
bearings i n  the four-square gear  t e s t e r s  a r e  run f o r  shor t  periods 
of t i m e  i n  a i r  t o  provide a small amount of lubr ica t ion  t o  the 
b a l l s  and races  of the  bearing, p r i o r  t o  i n s t a l l a t i o n  of t he  new 
s i z e  R-4 bearings.  

During the  t e s t  period the  armature cur ren t  of the  dc dr ive  
motor i s  monitored on a mult ipoint  recorder ,  every 15 min. 
the armature cur ren t  of the  permanent magnet dc motors i s  d i r e c t l y  
proport ional  t o  the torque output of the motors, t h i s  monitoring 
provides a continuous record of torque input t o  the tes t  r i g s .  
Table 111 shows the  14 combinations of mater ia l s  evaluated during 
t h i s  phase of the program i n  both atmospheric and vacuum environ- 
ments. These tes ts  a r e  terminated a f t e r  a t o t a l  running t i m e  of 
7 2 0  h r  accumulates on the t e s t  gears o r  when the  wear process re- 
duces the  gear p r o f i l e  by 10 percent.  

Since 
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w 
0 

M a t e r i a l  

I 

111 

I V  

v 
V I  

V I 1  

V I 1 1  

Table I11 
COMBINATIONS OF MATERIALS EVALUATED 

D e s c r i p t i o n  

C a r b u r i z e d  C 1 0 2 0  

N i t r i d e d  N i t r a l l o y  

B e r y l l i u m  C o p p e r  

Mart in  H a r d  C o a t e d  A l u m i n u m  

440C Sta in less  S tee l  

Phosphor B r o n z e  (15 percent M0S2) 

C 1 0 8 5  S i l v e r  P l a t e d  and M0S2 

Ligh t  A n o d i z e d  A l u m i n u m  

Material vs  Material 

I I1 
I1 I11 
I1 I V  
I1 V 

V I  
V I 1  

111 I V  
I11 V I  
111 V I 1 1  

I V  V I  
I V  V I 1  
I V  V I 1 1  

V V I  
V V I 1  



I n  the  f i r s t  68 tests a l l  gears a r e  run a t  1800 rpm, a few 
of the sets a r e  t e s t ed  with loads of 10 oz-in. but  the bulk of 
the  gears a r e  loaded t o  a torque of 20 oz-in. 
73 are  made with cycloidal  gears ,  discussed l a t e r  i n  t h i s  sect ion.  

Tests  69 through 

Tests 78 through 97 a r e  made with involute  gears fabr icated 
from n i t r ided  n i t r a l l o y  and 400 s t a i n l e s s  s t e e l .  These t e s t s  
are run a t  two speeds and three  torque loads: 900 and 1800 rpm; 
and 10,  20 and 30 oz-in. Tes ts  106 through 109 a r e  made with 
involute  gears fabr ica ted  from n i t r i d e d  n i t r a l l o y  and 440C s t a in -  
l e s s  s teel .  
loads of 10 and 30 oz-in:, the  o ther  two are run a t  1800 rpm and 
20 oz-in. load. Tes ts  111 through 1 2 1  a r e  made with n i t r i d e d  
n i t r a l l o y  v s  Martin hard coated 7075T6 aluminum a l loy .  
these gears a r e  lubricated and run a t  t es t  speeds of 1800 rpm 
and 20 oz-in. torque loads. The lubr icants  a r e  s o l i d  fi lms based 
on MoS2. 

Two of these tes ts  a r e  run a t  900 rpm with torque 

A l l  of 

During the tes ts  using cyc lo ida l  p r o f i l e  gears the t e s t  pro- 

- However, add i t iona l  e f f o r t  i s  expenfled t o  generate a re la t ionship  
cedures a r e  the same a s  those described f o r  the involute gears .  

between the  transducer readings recorded during the tes t  and a c t u a l  
wear. This e f f o r t  i s  required because of  t he  difference between 
the cyc lo ida l  and involute gear p r o f i l e s  and a l s o  because the in- 
a c t i v e  face  of the 0.125 i n .  th ick  cyc lo ida l  gears has t o  be 
lapped t o  provide s u f f i c i e n t  backlash. Table I V  shows the ma- 
t e r i a l  combinations, torque loads,  speeds and environments used 
f o r  the cyc lo ida l  gear t e s t s .  

Experimental Resul ts  

The r e su l t s  of the vacuum t e s t i n g  of the 14 gear mater ia l  
combinations ( f o r  involute  gears) a r e  presented i n  Table V .  The 
combinations a r e  ranked i n  descending order of  t h e i r  a b i l i t y  t o  
r e s i s t  wear. A t h ree - t e s t  sample i s  i n s u f f i c i e n t l y  la rge  t o  
derive s a t i s f a c t o r y  s t a t i s t i c a l  evaluations.  However, i n  the 
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Table IV 
CYCLOIDAL GEAR TEST CONDITIONS -- 

Environment 

Vacuum 

Laboratory 
Ambient 

Materia 1 
Combination 

I1 vs I 
I1 vs v 
I v s  v 
I1 vs v 
I vs v 
11 v s  I1 

I1 vs v 
I vs I1 

Load 
oz-in.  

20 
10 
10 
20 
20 
20 

20 
20 

Speed 
rPm 

1800 
1800 
1800 
1800 
1800 
1800 

1800 
1800 

3 2  



Table V 
SUMMARY OF GEAR WEAR I N  VACUUM AT 20 O Z - I N .  
TORQUE LOAD AND 1800 RPM (INVOLUTE PROFILE) 

Mater ia l  
Combination 

I1 vs IV 

IV vs  VI1 

I1 vs v 

I1 vs  VI1 

V vs  VII 

I vs  I1 

VI11 v s  111 

IV vs  VI11 

IV vs  111 

IV vs  VI 

V vs VI 

I1 vs  VI 

I1 vs  111 

VI vs  111 

Test  
Duration 

h r  

720 
720 
720 
720 
720 
720 
720 
720 
72 0 
720 
720 
393 
720 
46 0 
262 
720 
1 3 3  
3 14 
301 
337 
16 7 
16 7 
594 
133 
13 7 
337 

29 
26 

17.5 
29 
29 

6 
7 . 2  

4 
119 
1 . 5  

24 
24 

3.5 
1 . 5  

1 

-- 
Test 

Number 

15 
17 
1 9  
27 
28 
26 
13 
18 
20 
37 
38 
36 
30 
35 
29 
16 
39 
58 
59 
60 
23 
24 
25 
48 
49 
50 
6 1  
62 
63 
64 
67 
68 
46 
47 
45 
40 
41 
42 
5 1  
52 
57 

Ma ximum 
Wear 

Percent 

2.2  
2 .5  
2 .5  
2 .0  
4 . 0  
2 .0  
3 .0  
3 .5  
3 . 1  
5 .8  
7 .0  

1 0 . 0  
10.0 

9 . 0  
1 2 . 0  

3.5 
3 .5  
8 .6  

11.4 
7 .4  
8 . 0  
9 .0  

12 .0  
12 .2  
11.3 

6 . 1  
-‘m- - --  --- 
--- --- --- 
- _ e  - - -  
10.0 
-s- -_-  --- 
- - -  
- - _  
-e- 

- 

Material  With 
Maximum Wear 

Same 
Same 
Same 
Same 
I V  
Same 
Same 
Same 
Same 
Same 
I1 
Same 
Same 
VI1 
VI1 
I1 
I 
VI11 
VI11 
VI11 
VI11 
VI11 
Same 
IV 
IV 
IV 
Teeth sheared 
off V I  

Teeth sheared 
off VI 

Teeth sheared 
off VI 

Terminated due 
t o  increased 
torque 
Teeth sheared 
off VI 
Terminated 
torque too high 

3 3  



cases  where some of the  tests l a s t ed  720 h r  and o thers  of the same 
ma te r i a l  combination did not ,  the  wear r a t e  even f o r  the s e t s  t h a t  
l a s t ed  i s  higher a s  we read down the t ab le .  

Table V I  shows the t e s t  r e su l t s  f o r  involute  gears exposed 
t o  laboratory ambient a i r .  
combinations of mater ia l s  complete the  tes t :  n i t r i d e d  n i t r a l l o y  
vs Martin hard coated 7075T6 aluminum; Martin hard coated 7075T6 
aluminum vs C1085 hea t  t r ea t ed  t o  Rc5Q s i l v e r  p la ted  with 0,0001 
i n .  of E3C Molykote f i lm;  and n i t r i d e d  n i t r a l l o y  vs 440C s t a i n -  
l e s s  Rc55-60. These exh ib i t  exce l len t  wear proper t ies  i n  vacuum. 
The o the r  mater ia l  combinations f a i l  t o  run 720 h r  before accumu- 
l a t i n g  10 percent wear. 
Table V I ,  f a i l  prematurely by tooth breakage. 
copper gears  show evidence of p l a s t i c  flow, mater ia l  t r a n s f e r ,  and 
high wear r a t e s .  

A s  indicated i n  the t ab le ,  only three 

The Phosphor bronze gears ,  a s  noted i n  
Most of the beryll ium 

Representative gears t e s t ed  are  shown i n  Figures 14 through 
25. Each of the e igh t  mater ia l s  i s  shown a t  l e a s t  once, Figures 
26 and 27  show the torque required t o  r o t a t e  the gears a t  1800 
rpm as  a funct ion of time f o r  t he  l i f e  of the gears.  Figures 28 
through 30 show the approximate percentage wear as a funct ion of 
running t i m e  f o r  the  three material combinations found acceptable 
i n  the vacuum tests.  A s  noted, percentage wear i s  indicated a s  
approximate, s ince  i t  i s  a p l o t  of wear a s  measured with the  
transducers which a r e  s t rongly influenced by the wear p r o f i l e  
which va r i e s  from gear t o  gear.  Wear i s  rapid during the  ea r ly  
port ion of the t e s t ,  increases  q u i t e  slowly a f t e r  the run-in 
period the  f i r s t  100 h r ,  then remains r e l a t i v e l y  constant.  

Resul ts  of the i n i t i a l  screening t e s t s  a r e  a l s o  presented i n  
Tables V and V I .  Examination ind ica t e s  t h a t  only two of the 
mategial  combinations t e s t ed  ran f o r  720 h r  with less than 10 per- 
cen t  weae during the  screening t e s t s ,  namely: n i t r i d e d  n i t r a l l o y  
vs 440C s t a i n l e s s  s tee l ;  and n i t r i d e d  n i t r a l l o y  vs Phosphor bronze 

, 
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with a 15 percent M0S2 matrix. 
440C s t a i n l e s s  s t e e l  combination completed the  t e s t s  i n  both 
vacuum and laboratory environments. 

Only the n i t r ided  n i t r a l l o y  vs 

These r e s u l t s  ind ica te  t h a t  beryll ium copper and l i g h t  ano- 
dized 7075T6 aluminum gears run very poorly i n  both laboratory 
ambient and vacuum conditions.  The Phosphor bronze 15 percent 
MoS matr ix  gears run much be t te r  i n  laboratory atmosphere than 
i n  vacuum; however, the Martin hard coated gears do not  perform 
a s  wel l  i n  the laboratory environment. 

2 

The mater ia l  combination of n i t r i d e d  n i t r a l l o y  vs 440C s t a in -  
l e s s  s tee l  was chosen f o r  fu r the r  unlubricated t e s t i n g  with ex- 
panded speed and torque loads (900 rpm, 10 oz-in.;  900 rpm, 20 
oz-in.;  900 rpm, 30 oz-in.;  1800 rpm, 10 oz-in. and 1800 rpm, 
30 oz- in . ) .  The r e s u l t s  a r e  summarized i n  Table V I I .  Since a l l  
of the tes ts  resu l ted  i n  chipped gear t ee th ,  i t  was determined 
t h a t  the n i t r i d e d  case depth was much too large.  

A t h i r d  set  of gears of the  same mater ia l  combination was 
procured and t e s t ed  i n  a vacuum environment. The r e s u l t s  a r e  
shown i n  Table V I I I .  Note t h a t  a l l  of the tests show wear i n  
excess of 4 percent i n  a t  l e a s t  one gear.  

Further  t e s t i n g  was conducted i n  vacuum with involute  gears 
fabr ica ted  from n i t r i d e d  n i t r a l l o y  vs Martin hard coated 7075116 
aluminum a l l o y .  
burnished onto the surface of the  gears;  B ,  Electrofilm; and 6 ,  
Dow Corning Company's experimental u l t r a t h i n  (both B and C a r e  
a l s o  M0S2 based lub r i can t s ) .  
p le ted  the  720 h r  t e s t  period and one (Test 116, Table I X )  had 
very low wear when ha l ted  a t  340 hr .  T e s t  116 was prematurely 
ha l ted  when inord ina te ly  i r r e g u l a r  wear w a s  observed, 

The lubr icants  are  coded: A ,  ul t rapure  MoS2, 

None of these lubricated gears  com- 
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Table VI 
SUMMARY OF GEAR WEAR IN ATMOSPHERE AT 20 OZ-IN. 

TORQUE LOAD AND 1800 RPM (INVOLUTE PROFILE) 
1 I I 

Test 
Number 

Test  
Duration 

hr 
Materia 1 

Combination 

I1 vs v I 720 I 32 
I1 vs VI 
I1 vs I 
v vs VI 
IV vs VI 
v vs VI1 
I1 vs VI1 
VI vs 111 

IV vs VI1 
I1 vs IV 
I1 vs I11 
111 vs VI11 
IV vs VI11 

720 
502 
502 
307 
120 
120 

6 1  

2 1  
2 1  

8 . 7  
5 . 5  

4 

53 
4 3  
6 5  
6 6  
3 1  
33  
55 

22 
34 
44 
56 
2 1  

Maximum 
Wear 

Percent 

6 . 4  
2.0 

11.0 
11.0 

9 .0  
17.0 
11.0 

14 
100 

19 
1 9 . 0  
1 6 . 5  

Material With 
Maximum Wear 

v 
Same 
I1 
VI 
VI 
VI1 
VI1 
Teeth sheared 
off VI 
IV 
IV 
I11 
VI11 
VI11 
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Table V I 1  
SUMMARY OF TEST RESULTS ON UNLUBRICATED INVOLUTE 

GEARS (NITRIDED NITRALLOY VS 440C STAINLESS STEEL) 

Environment 

Vacuum 

Laboratory 
Ambient 

T e s t  
Number 

78 - 80 
9 1 , 9 2 , 9 6  

9 0 , 9 4 , 9 5  
86 - 88 
82 - 8 4  

8 1  
93 
97 
8 9  
85 

-- 

Speed Torque 
rpm oz-in.  

900 10 
900 20 

900 30 
1800 10  
1800 30 

900 10 
900 20 
900 30 

1800 10 
1800 30 

Running T i m e  
hr  

90 - 720 
274 - 498 

274 - 386 
406 - 614 
101 - 274 

720 
945 
208 
720 
180 

5 4  



Table V I 1 1  
RESULTS OF VACUUM TESTS ON THIRD SET OF UNLUBRICATED INVOLUTE GEARS 

NITRIDED NITRALLOY VS THROUGH-HARDENED 440C STAINLESS STEEL 



Test 
Number Lubricant' 

a 

B 

A 

A 
B 
B 
B 

93 

C 
c 
e 

Table IX 
BESUETS OF VACUUM TEST ON LUBRICATED I LUTE GEARS 

(NITRIDED NITULEOY VS MARTIN RD COATED 7075T6 A L U M I M  
ALLOY, SHAFT SPEED 1800 RPM, TORQUE IDAD 20 O Z - I N , )  

Environment 

PL 5 a m 8  

PL 5x10'=8 

Lab Ambient 
p < 6X10"* 

Lab Ambient 

< 6x10-8 
K 7x10-8 

Lab Ambient 

Test Period 
har 

364 

364 

3 12 

216 
340 
340 
238 

119 

340 
66 

M 
Percent 

Wear 

5.3 

4.3 

2 . 3  

5.8 
6.1 
1.1 
2 - 3  

6 . 1  

3 . 2  
6.7 
5.3 

Gear With 
ximum Weal 
Dimeqsion 

i n  e 

0.125 

0,125 

8.8875 

0.125 
0.125 
0. I875 
0.1875 

0.125 

8.125 
0.1125 
0, I25 

e r i a l  

IV 

11 

I 

I V  
I V  
H I  
I1 

I V  

I1 
I V  
I V  

P 
Percent 

Wear 

~ 0 . 5  

~ 0 . 5  

0.9 

1 .5  
2.4 

c0.5 
~ 0 . 5  

~ 0 . 5  

1 . 2  
q0.5 
~0.5 

Gear With 
.nimum Weal 
Dimension 

in .  

0,1875 

0 e 1875 

P P -  

0.1875 
0 e 1875 
0.1875 
0.125 

0.1875 

0.125 
0.1875 
0.1875 

Material 

I1 

I V  

I V  

I V  
I1 
I1 
I V  

I1 

I V  
IV 
I V  

I V  corners 
chipped 
I V  corners 
chipped 
I V  corners 

I V  
I V  edge rounde 
Edge rounded 
I V  edge chipped 
lube flaked 

chipped 
Lube flaked 
Rounded corners 
0.125 in .  I V ,  
one tooth badly 
chipped 

chipped 

C - Ul t ra th in  (Do 

56 



Under l abora to ry  ambient cond i t ions  ~ wear can be monitored 

d i r e c t l y  and e f f i c i e n t l y ;  however, wear i s  l e s s  observable  i n  
vacuum t e s t s .  T e s t s  114 and 1 2 1  showed less than 1 percent  wear 
a f t e r  195 h r .  
24 h r .  The wear followed a desc r ibab le  p a t t e r n .  During the  f i r s t  
day o f  t e s t i n g  a s p r i n k l i n g  of  d e b r i s  w a s  deposi ted on the support  
s tand of  t he  t es t  f i x t u r e .  This  of course w a s  c a r e f u l l y  observed 
and i t  w a s  noted t h a t  t h e r e  w a s  no ( o r  very l i t t l e )  i nc rease  a s  
the  t e s t  progressed.  The day be fo re  the  t e s t  w a s  ended t h e r e  was 
v e r y  l i t t l e  d e b r i s .  The next  day the  support  s tand of t he  t e s t  
f i x t u r e  and the  bear ing  support  were covered wi th  d e b r i s ,  some 
thrown o f f  t h e  g e a r s  by the c e n t r i f u g a l  f o r c e s .  

Th i s  increased  t o  n e a r l y  6 percent  during t h e  next  

A f t e r  observing t h i s  c a t a s t r o p h i c  f a i l u r e  we watched care- 
f u l l y  f o r  d e b r i s  depos i t i on  i n  the  vacuum chamber and when a 
sudden d e b r i s  i nc rease  occurred the  t e s t i n g  w a s  h a l t e d .  Three 
gea r s  o u t  of t h e  complete se t  of 44 show l e s s  than 4 percen t  w e a r .  
However, information can be gleaned from sec t ion ing  and s tudying 
these  g e a r s  a long  w i t h  t h e  o t h e r s .  A l so  i t  i s  u n l i k e l y  t h a t  they 
would have l a s t e d  much longer .  F igures  31 through 34 presen t  sec- 
t i o n s  through the  t e e t h  of gea r s  which were used i n  these  t es t s .  

Cyclo ida l  Gears 

A d e t a i l e d  t a b u l a t i o n  of the  r e s u l t s  ,geneya,ced d’u&Kng t h  
c y c l o i d a l  p r o f i l e  gea r  eva lua t ions  i s  shown i n  Table  X .  
c ludes  the  r e s u l t s  from s i x  vacuum tests and two atmospheric t es t s .  
During t h i s  phase of t he  program only  carbur ized  C1020, n i t r i d e d  
n i t r a l l o y ,  and 440C s t a i n l e s s  s t ee l  mater ia l s  were eva lua ted .  As 
t he  t a b l e  shows, none of the c y c l o i d a l  gea r s  f a b r i c a t e d  from ahese 
m a t e r i a l s  s u c c e s s f u l l y  completed the  720 h r  t e s t  per iod .  Based 
on a t i m e  r e f e rence  t h e  c y c l o i d a l  gear  t e s t s  were completed 
immediately a f t e r  t h e  f i r s t  224  i n v o l u t e  gear  t e s t s :  

Th i s  in- 
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Figure 31 Metallograph of Martin Hard Coated Aluminum 
Gear from Laboratory Environment Test, 21 hr 
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Figure 32 Metallograph of Martin Hard Coated Aluminum 
Gear from Vacuum Test, 720 hr 
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Figure 33 Test  106, 440C S t a i n l e s s  S t e e l  Involute Gear 



Figure  34 Test  113, Mart in  Hard Coated Aluminum, MoS2 
Lubr ica ted ,  Invo lu te  Gear Tes t  i n  Vacuum, 
200 hr  



Test 

Table X 
CYCLOIDAL GWRS TESTED AT 1800 RPM 
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70 
71 
72 

74 
73 
75 

I1 vs v 
11 vs v 
I1 vs v 
I vs v 

I vs v 
I vs v 
I vs I1 

Environment 

Lab Ambient 
Vacuum 
Vacuum 
Lab Ambient 

Lab Ambient 
Vacuum 
Vacuum 

Torque 
Load 
oz-in. 

20 
10 
20 
20 

20 
20 
20 

Test terminated, 
ent backlash 

6 . 0  1 3 . 3  
0 . 9  3 .0 
1.2 9 . 9  



Apparatus R e l i a b i l i t y  

The establ ished tes t  period ( 7 2 0  hr)  provided an exce l len t  
opportunity t o  evaluate the r e l i a b i l i t y  of many components i n  a 
vacuum environment. 
discussed. 

Some observations made during the study a r e  

Motors. - The 24 dc motors used t o  dr ive  the four-square 
t e s t  f i x t u r e s  a r e  used f o r  -2500 h r  without any problem. 
t i m e  the motors a r e  returned t o  the manufacturer f o r  replacement 
of the brushes and commutators. Figure 5 shows tha t  the  motors 
a r e  located outs ide of the  vacuum chamber. The r o t a t i o n a l  torque 
i s  coupled by magnetic f l u x  through a nonmagnetic membrane. 

A t  t h a t  

SR4 bearin,gs with Salox M , re ta iners .  - Very good wear char- 
acter is t ics  a r e  obtained with the SR4 precis ion qua l i t y  bearings 
using Salox M r e t a i n e r s .  I n i t i a l l y ,  some doubt was expressed a s  
t o  the  f e a s i b i l i t y  of using such bearings f o r  720  h r  i n  a vacuum 
environment. However, not  only can these bzarings be used f o r  
720 h r ,  bu t  severa l  emerge i n  very good condition. 
reusable f o r  subsequent tes ts .  A t  the  end of 1440 hr  of accumu- 
l a t ed  usage, these bearings f a i l  i n  a manner very similar t o  

Some a r e  even 

o ther  bearings which a r e  unusuable a f t e r  only 720  h r .  

A r e l a t ionsh ip  w a s  found between the  amount of wear which 
occurs on the t e s t  gears and the  damage sustained by the bearings. 
Af t e r  the  bearings a r e  used f o r  720  h r  they a r e  cleaned by blowing 
a i r  through the bearing while allowing i t  t o  r o t a t e .  This pro- 
cedure apparently removes loose wear p a r t i c l e s  from the bearings 
and i n  cases where the bearing movement has not  degraded s igni -  
f i c a n t l y ,  the bearings a r e  reusable.  The condition of the bearings 
i s  usua l ly  qu i t e  good where only a few percent wear occurs on the 
tes t  gears .  This r e l a t i o n  t o  gear  wear holds even when the bearings 
have dust  sh ie lds .  This i s  t o  be expected s ince with increasing 
wear v ibra t ion  increases;  the bearings a r e  thus under increasing 
v ib ra t iona l  loading. 
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Ii should be noted t h a t  t hese  d u s t  s h i e l d s  have c l ea rances  
of 0.001 t o  0,002 i n .  and, t h e r e f o r e ,  wear p a r t i c l e s  can f i n d  
t h e i r  way i n t o  t h e  r a c e s .  For t h i s  reason,  it may be b e n e f i c i a l  
t o  use bear ings  which have a t e f l o n  s e a l  t o  prevent t h i s  problem, 

The type of f a i l u r e  which occurs i n  t h e  bear ings i s  a com- 
b i n a t i o n  of su r face  f a t i g u e ,  and ab ras ive  and adhesive wear which 
r e s u l t  i n  p i t t i n g  of t h e  r aces  and b a l l s .  This type of wear, 
p a r t i c u l a r l y  i n  vacuum, r e s u l t s  when inadequate l u b r i c a t i o n  i s  
p resen t  and thus  metal  t o  metal  con tac t  predominates. The lack  
o f ,  o r  t h e  s m a l l  amount of l u b r i c a t i o n ,  i s  evidenced by t h e  only 
s l i g h t l y  worn cond i t ion  of t he  Salox M r e t a i n e r s .  I n  a d d i t i o n ,  
many of t h e  used b a l l s  have a c h a r a c t e r i s t i c  bronze c o l o r  which 
i n d i c a t e s  adhesion i n  the  absence of s u f f i c i e n t  l u b r i c a t i o n .  

Four-square t e s t  f , ix tu , res  e - The four-square t e s t  apparatus  
shown i n  Figure 4 performs w e l l  during t e s t s  a t  10 and 20 oz- in ,  
torque loads ;  however, problems a r i s e  when t h e  torque load i s  
increased  t o  30 oz- in .  We found it necessary t o  r ep lace  a l l  t he  
s l o t t e d  head s t a i n l e s s  s t e e l  screws i n  t h e  gear  clamps on t h e  
tes t  f i x t u r e s  wi th  hardened socket head cap screws t o  prevent  
r o t a t i o n  of t h e  gea r s .  

MODES OF GEAR SURFACE DETERIOFUTION 

The forms of gea r  d e t e r i o r a t i o n  which predominate wi th  each 
combination of m a t e r i a l s  a r e  i n t e r p r e t e d  by simultaneously ex- 
amining t h e  phys ica l  c h a r a c t e r i s t i c s  of t h e  m a t e r i a l s  and t h e  
t e s t  environment. These modes may be grouped a s  follows: 

Wear 
Surface Fa t igue  
P l a s t i c  Flow 
Tooth Breakage 

These a r e  p r imar i ly  c o n t r o l l e d  by t h e  gear  geometry, gear  m a t e r i a l  
and l & r i c a t i o n .  The primary v a r i a b l e  i n  t h i s  study i s  gear  m a -  
t e r i a l ,  t h e  e f f e c t  of l u b r i c a n t s  i s  secondary. A b r i e f  d i scuss ion  
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of t h e  c y c l o i d a l  and invo lu te  gear  p r o f i l e s  w i l l  help t o  r e l a t e  
t h e  in f luence  of gear  geometry on the  t e s t  r e s u l t s .  

Although a s e r i e s  of c y c l o i d a l  gears  i s  eva lua ted ,  the  major 
e f f o r t  i s  expended using invo lu te  gea r s .  The problem of f a b r i -  
c a t i n g  p r e c i s i o n  c y c l o i d a l  gea r s  and t h e  s e n s i t i v i t y  of  t hese  
gears  t o  changes i n  c e n t e r  d i s t ance  seve re ly  l i m i t s  t h e i r  use 
f o r  instrument  s i z e  spur  gea r s .  
i s  thus d i c t a t e d  even though i t  i s  recognized t h a t  t h i s  p r o f i l e  
has one very important l i m i t a t i o n .  Namely, s ince  e x t e r n a l  gears  
using invo lu te  p r o f i l e s  have convex a c t i v e  su r faces ,  t h e  r e l a t i v e  
cu rva tu res  i n  t h e  con tac t  zone between these  gea r s  i s  q u i t e  s e -  
vere .  For  t h i s  reason t h e  con tac t  s t r e s s e s  a r e  high. The only 
method of reducing these  s t r e s s e s  f o r  a p a r t i c u l a r  gear  diameter 
i s  t o  inc rease  t h e  p re s su re  ang le ,  s i n c e  the r e l a t i v e  curva ture  
of t he  t e e t h  i s  independent of t h e  p i t c h  of t he  t e e t h  a t  any 
po in t  of c o n t a c t .  

The use of t h e  invo lu te  gears  

An a l t e r n a t i v e  gear  p r o f i l e  which may hold promise f o r  vacuum 
a p p l i c a t i o n  i s  the  modified c y c l o i d a l  p r o f i l e  known as t h e  c i r -  
c u l a r  arc of t h e  Wildhaber-Novikov form. Although t h i s  p r o f i l e  
i s  more s e n s i t i v e  t o  c e n t e r  d i s t a n c e  v a r i a t i o n  than t h e  invo lu te  
form, i t  i s  more t o l e r a n t  than t h e  normal c y c l o i d a l  p r o f i l e .  

The c i r c u l a r  arc c o n s i s t s  of a concave su r face  mating wi th  a 
convex s u r f a c e  and t h e  con tac t  s t r e s s e s  a r e  consequently consid- 
e rab ly  reduced. 
gears  i n d i c a t e  t h a t  a t  t h e  same loads the  Novikov o u t l a s t s  t he  
invo lu te  by 3 t o  5. Such r e s u l t s  m e r i t  s e r i o u s  cons ide ra t ion  f o r  
gears  requi red  f o r  use over long per iods  of time. These gears  
a r e  e s s e n t i a l l y  c i r c u l a r  and must be used as  h e l i c  gea r s  i n  o rde r  
t o  s a t i s f y  t h e  fundamental gear  l a w .  Therefore ,  they are n o t  spur  
gears  and should probably be considered only f o r  l o n g - l i f e  a p p l i -  
c a t i o n s  where t h e  con tac t  s t r e s s e s  w i l l  s i g n i f i c a n t l y  reduce gear  
l i f e  e 

T e s t s  w i th  invo lu te  p r o f i l e  and Wildhaber-Novikov 
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Wear 

Wear i s  a phenomenon which i s  cha rac t e r i zed  p r imar i ly  by t h e  
d e t e r i o r a t i o n  of material su r faces  when exposed t o  dynamic mechan- 
i c a l  and/or  chemical environments. The d e t e r i o r a t i o n  can be mani- 
f e s t e d  by loss of m a t e r i a l  and a change i n  t h e  c h a r a c t e r i s t i c s  of 
t h e  s u r f a c e s  i n  con tac t  i n  such a manner t h a t  performance i s  de- 
graded. I n  more severe  c a s e s ,  the  d e t e r i o r a t i o n  leads  t o  scor ing  
o r  s c u f f i n g  of t h e  con tac t ing  su r faces .  A d e t a i l e d  d i scuss ion  of 
t h i s  phenomenon as w e l l  as d e s c r i p t i o n s  of e x i s t i n g  t h e o r i e s  a r e  
presented  i n  Appendix De 

Surface Fa t igue  

Areas near  t h e  p o i n t s  of con tac t  of r o l l i n g  s p h e r i c a l  o r  
c y l i n d r i c a l  su r f aces  a r e  sub jec t  t o  Hertz  stress concent ra t ions  
and c y c l i c  con tac t  can t h e r e f o r e  lead t o  high values  of  l o c a l  
c y c l i c  s t r e s s ,  This  leads  t o  a f a t i g u e  f a i l u r e  r e s u l t i n g  i n  t h e  
removal of a r e l a t i v e l y  l a r g e  ch ip  o r  i n  s p a l l i n g  o r  p i t t i n g  of 
t h e  s u r f a c e .  This  type of wear i s  c a t a s t r o p h i c  and gene ra l ly  
causes a p a r t  t o  become inoperable  q u i t e  suddenly. The magnitude 
o f  t h e  con tac t  s t r e s s  and t h e  number of cyc le s  t o  f a i l u r e  a r e  r e -  
l a t e d  i n  t h i s  kind of  f a t i g u e  i n  very much the  same way a s  s t r e s s e s  
and cyc le s  i n  a t r a d i t i o n a l  S-N curve.  The exact  c h a r a c t e r  of 
t he  maximum s t r e s s  depends not  only upon t h e  nomtal load but  a l s o  
the  p r o p e r t i e s  and dimensions of the r o l l i n g  su r faces  and upon 
t h e  r a t i o  of r o l l i n g  t o  s l i d i n g  of t h e  su r faces .  Lubricants  a r e  
e f f e c t u a l  i n  reducing wear by prevent ing adhesion,  and reducing 
t h e  c o e f f i c i e n t  of f r i c t i o n  so  t h a t  t h e  H e r t i z i a n  con tac t  s t r e s s e s  
a r e  i n s u f f i c i e n t  . 

Plas t ic  Flow 

P l a s t i c  flow occurs  on gear  su r faces  as  a r e s u l t  of h igh  
s t r e s s e s .  This  type of gear  f a i l u r e  i s  normally ind ica t ed  by 
f inned m a t e r i a l  overhanging t h e  t i p s  of t h e  t e e t h  and i s  more 
predominate wi th  s o f t  and medium hard m a t e r i a l s  which have 
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r e l a t i v e l y  low y i e l d  s t r e n g t h s .  To e l imina te  p l a s t i c  flow the  load 
( t o t a l  o r  con tac t )  must be reduced o r  t h e  load bear ing  c a p a b i l i t y  
of t h e  too th  must be increased by m a t e r i a l  s e l e c t i o n .  

Tooth Breakage 

Tooth breakage i s  caused by overload,  shock, o r  common f a t i g u e .  
E i t h e r  a complete t o o t h  o r  a p o r t i o n  thereof  may be broken o f f ,  

TEST RESULTS 

The t e s t  r e s u l t s  generated on t h i s  program a r e  no t  intended t o  
provide s o l u t i o n s  t o  the  wide v a r i e t y  of problems a s s o c i a t e d  with 
the  p r e d i c t i o n  of wear i n  vacuum, however, they do provide guide- 
l i n e s  f o r  t h e  s e l e c t i o n  of m a t e r i a l  combinations f o r  use i n  vacuum. 
I n  t h i s  r e spec t  they a r e  s i g n i f i c a n t  when viewed and i n t e r p r e t e d  a s  
a s e r i e s  of screening t e s t s  f o r  a wide v a r i e t y  of m a t e r i a l s .  

Thus, i t  should be remembered t h a t  t h e  l e v e l  of con tac t  s t r e s s  
imposed on the  m a t e r i a l s  t e s t e d  w i l l  have a much more marked in -  
f luence  on the  r a t e  of wear of some m a t e r i a l  combinations than on 
o t h e r s .  These d i f f e r e n c e s  r e s u l t  from t h e  v a r i a t i o n  of f a t i g u e  
c h a r a c t e r i s t i c s  of t h e  i n d i v i d u a l  m a t e r i a l s  as w e l l  as t h e  wear 
r e s i s t a n c e  of t he  m a t e r i a l s  a s  p a i r s .  The con tac t  s t r e s s ,  i n  t hese  
t e s t s ,  i s  -60,000 p s i  which i s  f a r  below t h e  f a t i g u e  s t r e n g t h  of 
the ha rde r  m a t e r i a l s ,  bu t  i s  very near  t h e  l i m i t i n g  s t r e s s  f o r  a 
m a t e r i a l  such a s  Phosphor bronze wi th  a 15 percent  MoS2 matr ix .  

N i t r i d e d  n i t r a l l o y  vs 440C, s t a i n l e s s ,  s , t ee l .  - This  combination 
endures w e l l  i n  bo th  labora tory  and vacuum environments. I n  both 
s e r i e s  of t e s t s  t h e  primary mode of su r face  degradat ion i s  by ab- 
r a s i v e  wear. The f a c t  t h a t  both of t hese  m a t e r i a l s  have very hard 
but chemically d i f f e r e n t  su r f aces  may account f o r  the  good pe r fo r -  
mance. I n  one case  t h e  su r face  i s  composed of d i spersed  f i n e  
n i t r i d e s  and i n  t h e  o t h e r  d i spersed  f i n e  ca rb ides .  The n i t r i d e d  
n i t r a l l o y  s u r f a c e  hardness approaches 1200 knoop which i s  a t t r i -  
buted t o  t h e  s t a t e  of  f i n e  d i spe r s ion  of t h e  n i t r i d e  p a r t i c l e s  i n  
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t h e  mat r ix  r a t h e r  than t h e  inhe ren t  hardness of l a r g e  n i t r i d e  g r a i n s .  
The 440C s t a i n l e s s  s t e e l  gear  has a hardness of -700 knoop p lus  a 
s t r u c t u r e  conta in ing  chromium carb ides  and in te rmedia te  carbon 
mar t ens i t e .  

This  combination of m a t e r i a l s  may ‘be usable  f o r  extended 
per iods of t i m e ,  s i n c e  the  n i t r i d e d  n i t r a l l o y  gears  a r e  s l i g h t l y  
harder  than the  s t a i n l e s s  ones and thus  should wear a t  a slower 
r a t e .  Since t h e  s t a i n l e s s  s t e e l  gears  a r e  completely hardened t h e  
r a t e  of wear w i l l  no t  cause these  gea r s  t o  f a i l  a f t e r  a few thou- 
sandths  wear has  occurred.  However, the  l i f e  of such a combina- 
t i o n  could poss ib ly  be extended by us ing  a deeper n i t r i d e d  case ,  
s ince  t h i s  would a l low a d d i t i o n a l  wear a t  o r  near  the  maximum hard- 
ness of t h e  n i t r i d e d  case .  

N i t r ided  n , i t r a l lo ,y  vs ,carburized (21020. - This  combination 
does n o t  s u c c e s s f u l l y  complete a l l  t e s t s  i n  e i t h e r  vacuum o r  lab- 
o r a t o r y  environments. The i n i t i a l  mode of f a i l u r e  i n  a l l  cases  
appears t o  be excess wear. T e s t  16 success fu l ly  completed t h e  720 
h r  t e s t ,  and both m a t e r i a l s  wore approximately the  same amount. 
However, i n  a11 o t h e r  t e s t s  t he  wear occurs  more r a p i d l y  on the  
carbur ized  C1020 gea r s .  I n  the advanced s t ages  of wear some ev i -  
dence of p l a s t i c  flow of t h e  carbur ized  gear  occurs .  

The u s e f u l  l i f e  of gears  made from t h i s  combination of mate- 
r i a l s  could be extended by inc reas ing  t h e  depth of both the  c a r -  
burized and n i t r i d e d  cases .  This  seems t o  be very d e s i r a b l e  i n  
the  carbur ized  g e a r s ,  s ince  the  s u b s t r a t e  m a t e r i a l  i s  very s o f t  
and not  capable of support ing the  load,, a f t e r  only a very small 
percentage of wear has occurred. 

N i t r i d e d  n i t r a l l o y  vs C.1085 s i l v e r  ,plated and M0S2. - This  
m a t e r i a l  combination provides some s i g n i f i c a n t  information about 
t h e  ope ra t ing  parameters.  Two of the  t h r e e  vacuum t e s t s  run 720 
h r  and the  t h i r d  s e t  runs 393 h r ;  however, t he  s e t  t e s t e d  i n  the 
atmosphere runs only 120 h r .  I n  a l l  these  t e s t s  the C1085 gears  
show evidence of p l a s t i c  flow. These gea r s  a r e  h e a t  t r e a t e d  t o  
Rc50 p r i o r  t o  being p l a t e d .  
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Unfortunately the  t e n s i l e  s t rength  of C1085 s t e e l  heat t r ea t ed  
t o  Rc50 a s  a function of temperature i s  not ava i lab le  i n  the l i t e ra -  
tu re .  However, published values of t e n s i l e  s t rength  a s  a function 
of temperature f o r  C1030 hea t  t r ea t ed  t o  wRc33 ( r e f s  1 and 2) should 
be qu i t e  s imi l a r  t o  C1090 o r  probably lower. 

In te rpola t ion  of these published values of t e n s i l e  and y i e ld  
s t rengths  ind ica tes  t h a t  t he  temperature of the  a s p e r i t i e s  on the  
wear surface probably exceeds 800°F before they flow p l a s t i c a l l y  
a t  a contact  stress of 60 000 p s i .  Examination of the  mating n i -  
t r i ded  gears tested i n  vacuum indica tes  t h a t  the  s i l v e r  p l a t e  and 
MoS2 coat  the  n i t r i d e d  wear surface and should reduce the s l i d i n g  
f r i c t i o n  during operation. However, i n  a i r  the MoS2 i s  much l e s s  
e f f e c t i v e ,  because of oxidation a t  t he  elevated operating tempera- 
t u re .  This may account f o r  apparent b e t t e r  operation of the com- 
binat ion i n  vacuum. 

The n i t r i d e d  case shows evidence of br inne l l ing  and surface 
fa t igue  and subsequent mater ia l  t r ans fe r  a f t e r  -8 percent wear. 
This tends t o  subs tan t ia te  the  need f o r  a deeper n i t r i d e d  case. 

S t a in l e s s  s t e e l  440C vs C1085 s i l v e r  p la ted  and MoS2. - This 
combination does not complete the  720 h r  t es t  i n  e i t h e r  vacuum o r  
laboratory environments, primarily because of p l a s t i c  flow on the  
surface of a l l  the  C1085 gears.  The 61085 gears a l s o  show a la rge  
amount of cold working and br inne l l ing .  I n  addi t ion ,  a small 
amount of cold mater ia l  t r a n s f e r  between t h i s  combination i s  evi-  
dent which should, however, be expected a f t e r  p l a s t i c  flow i s  
i n i t i a t e d  on the  C1085 gears.  

Martin hard coated aluminum vs n i t r i d e d  n i t r a l l o y .  - These 
mater ia l s  successful ly  complete the tes ts  i n  vacuum, but f a i l  very 
quickly i n  the  ambient laboratory environment. The anomaly must 
r e s u l t  from the  environmentally developed physical s t r u c t u r e  and 
any difference i n  physical  s t ruc tu re  of the Martin hard coated 
case.  Figure 35 shows the  gear used i n  the 2 1  h r  ambient labora- 
tory t e s t ,  and Figure 36 shows a s imi l a r  sec t ion  of a gear t e s t ed  
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F i g u r e  35 T e s t  119, N i t r i d e d  N i t r a l l o y  
I n v o l u t e  Gears MoS2 Lubr ica ted  
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lOOX Magnif ica t ion  

F igu re  36 Gear Tooth f r o m  Mart in  Hard Coated 
Aluminum I n v o l u t e  Gear, MoS2 Lubr ica ted  , 
T e s t  119 
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f o r  720 h r  i n  vacuum. Each f i g u r e  shows cracks  i n  the  gear  hard 
c o a t .  I n  the  ambient l abora to ry  t e s t i n g  (Figure 35) t he  c racks  
a r e  perpendicular  t o  the  hardened case  and o r i g i n a t e  a t  t h e  s u r -  
f a c e ;  while  i n  the  vacuum atmosphere t e s t i n g  the  c racks  a r e  paral- 
l e l  t o  t h e  hardened case  and a r e  subsurface i n  o r i g i n .  

The reasons f o r  both f a i l u r e s  must be c l a r i f i e d  by an  inves- 
t i g a t i o n  and a n a l y s i s  based on t h e  su r face  and subsurface s t r a i n s  
due t o  the  Her t z i an  s t r e s s e s .  Ne i the r  t he  r e q u i s i t e  experimental  
i n v e s t i g a t i o n  nor t h e  subsequent a u x i l i a r y  a n a l y s i s  were wi th in  
the  scope of t h i s  program. It  seems t h a t  second order  d i f f e r e n c e s  
i n  t h e  case  depth and composition a r e  r e spons ib l e  f o r  t he  d i f f e r e n c e  
i n  the  a b i l i t i e s  of t h e  two gea r s  t o  withstand the  s t r e s s e s  and 
s t r a i n s  t o  which they were subjec ted .  It  must be apparent  t h a t  a 
f u l l y  developed t e c h n i c a l  c l a r i f i c a t i o n  i s  necessary t o  be a b l e  t o  
s a t i s f a c t o r i l y  design hardened cases  e 

One should a l s o  cons ider  t h e  o r i g i n a l  condi t ion  of t h e  sur -  
f ace .  The anodized su r face  i s  composed of a tenacious aluminum 
oxide (Aa203> f i l m  d i r e c t l y  i n  c o n t a c t  wi th  the  aluminum; on top  

d r a t e s  of the  same ( r e f s .  3 and 4 ) .  I n  vacuum the  water i s  r e -  
moved and only the  very anhydrous A d 2 0 3  i s  exposed t o  wear. I n  
the  l abora to ry  ambient t e s t i n g  t h e  su r face  i s  exposed t o  water 
vapor i n  the  a i r .  Any hydra tes  of aluminum oxide can be a f f e c t e d  
by t h e  water  vapor and the  f r i c t i o n a l l y  generated temperature i n -  
c r e a s e .  Any hydra tes  developed would wear f a s t e r  than the  anhydrous 

of t h i s  f i l m  t h e r e  i s  a porous su r face  comprised of Ad203  and hy- I 

Ai203 0 

Ma-rtin hard  ,coated a,l,uminum .v,s Cl08.5 s i , l ve r  plat,ed, and- MoS2 e - 
This  combination f a i l s  very quick ly  i n  atmospheric t e s t s  f o r  the  
same reasons a s  t he  previous combination. I n  vacuum t e s t s  t he  ma- 
t e r i a l s  perform extremely w e l l ,  A s  discussed ,  t he  Martin hard 
coated gea r s  run much b e t t e r  i n  vacuum and i n  a d d i t i o n  s i n c e  t h i s  
coa t ing  i s  porous it al lows the  s i l v e r  and MoS2 t o  flow i n t o  the 
mat r ix  of the coa t ing .  This  phenomenon i s  very ev ident  when t h e  
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Mar.iin hard coated gear  su r faces  a r e  examined with a microscope. 
I n  a d d i t i o n ,  i t  i s  i n t e r e s t i n g  t o  note  t h a t  very l i t t l e  evidence 
of p l a s t i c  flow i s  found on the  C1085  gea r s  i n  the  t e s t s  wi th  
Martin hard coated m a t e r i a l .  This  i s  a t t r i b u t a b l e  t o  the  reduced 
f r i c t i o n a l  energy generated a t  t he  mating su r faces .  

N i t r ided  n i t r a l l o y  vs Pho,sphor bronze with 15  percent  M0S2 
matr ix .  - Excel len t  wear c h a r a c t e r i s t i c s  could probably be obtained 
with t h i s  m a t e r i a l  combination i f  t h e  s t r e n g t h  of the  M0S2 impreg- 
nated Phosphor bronze gears  could be improved. The combination 
runs very w e l l  i n  t h e  atmospheric t e s t  where the  temperature of 
t h e  gea r s  i s  s l i g h t l y  reduced. However, when t e s t e d  i n  vacuum 
where the  gear  temperature i s  e l eva ted  the  t e e t h  of t h e  Phosphor 
bronze gea r s  f a i l .  A t  the  end of 720 h r  i n  the  atmospheric t e s t s  
the  Phosphor bronze w a s  j u s t  beginning t o  show evidence of su r face  
f a t i g u e .  
show MoS2 smeared o r  impregnated i n t o  the  n i t r i d e d  mat r ix .  

I n  a l l  t e s t s  wi th  t h i s  combination the  n i t r i d e d  gears  

The Phosphor bronze gears  must be considered marginal f o r  use 
a t  20 oz- in .  torque load,  s i n c e  t h i s  load generated a bending 
s t r e s s  of -2000 p s i  a t  t h e  r o o t .  T e s t  specimens of t h i s  m a t e r i a l  
have a rup tu re  modulus of only 7000 t o  10 000 p s i .  Therefore ,  any 
use of t hese  gears  f o r  long per iods  of time i s  sub jec t  t o  f a t i g u e  
f a i l u r e .  I n  a d d i t i o n ,  t he  con tac t  s t r e s s  of 60 000 p s i  would 
cause s u r f a c e  f a t i g u e  un le s s  t he  s t r e n g t h  of t h e  gears  could be 
improved. 

Phosphor bronze wi th  15  percent  MoS7 vs 440C s t a , i n l e s s  s t e e l . -  
The r e s u l t s  of t h i s  combination of m a t e r i a l s  need no f u r t h e r  d i s -  
cuss ion ,  s ince  they a r e  almost i d e n t i c a l  t o  those obtained wi th  
n i t r i d e d  n i t r a l l o y  vs Phosphor bronze. The only s i g n i f i c a n t  d i f -  
fe rence  i s  t h a t  t he  Phosphor bronze gea r s  f a i l  by t o o t h  breakage 
even i n  the  atmospheric t e s t s  wi th  t h i s  combination. 
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cent MoS2 matrix.  - A s  i n  a l l  other  tes ts  with Phosphor bronze with 
the  MoS2 matrix,  these gears f a i l  by tooth breakage, 
i n t e r e s t i n g  note with t h i s  combination of mater ia l s ,  the  layer  on 
the  Martin hard coated gears A1203 does not f a i l  i n  the atmospheric 
tes ts  a f t e r  307 h r  of usage. 
accepts the  M0S2 lubr icant  i n t o  the coat ing and a s  a r e s u l t  the 
surface temperature f luc tua t ions  of the mating gears a r e  reduced.. 

Light anodized aluminum vs b,ery,llium c0ppe.r. - This combina- 
t i o n  f a i l s  i n  both atinospheric and vacuum tests  due t o  the  break- 
down of the  very t h i n  coating of A1203  which i s  incapable of 
supporting the contact  stresses. Another i n t e re s t ing  occurrence 
i s  the marked t r a n s f e r  of beryllium copper t o  the l i g h t  anodized 
aluminum gear i n  vacuum. However, t h i s  should probably be a n t i -  
c ipated because of t he  apparently high surface temperatures en- 
countered during these tests a t  20 oz-in.  of torque load. 

Martin, hard coated a1,uminum vs b,e,r,yll,ium copper. - These ma- 

However, one 

This suggests t h a t  the Al2O3 coating 

t e r i a l s  f a i l  i n  the  same manner a s  the  previous combination. Again 
a marked t r a n s f e r  of material occurs i n  the vacuum t e s t s .  This 
t r ans fe r  i s  i n i t i a t e d  i n  vacuum before the Al2O3 coating f a i l s .  

Light anodized aluminum vs Martin hard coated aluminum. - 
This combination f a i l s  i n  a very shor t  period of t i m e  due t o  the 
f a i l u r e  of the l i g h t  anodized coating. The f a i l u r e  i s ,  of course,  
more rapid i n  the atmospheric tes ts .  

cent  MoS2 matrix. - Breakage of the t e e t h  on the  Phosphor bronze 
gears i s  the cause of f a i l u r e  f o r  t h i s  combination. 

Nitr ided n i t r a l l o y  vs beryllium copper. - This combination 
runs very poorly. The vacuum tests a r e  terminated when the torque 
increases  beyond the capab i l i t y  of the dc motors t o  turn  the r i g .  
The atmospheric tests a r e  terminated when the  t e e t h  f a i l  on the 
beryllium copper gears a f t e r  a high percentage of wear occurs. 
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Examination of both vacuum and atmospheric t e s t  samples shows marked 
adhesion and m a t e r i a l  t r a n s f e r  i n  all t e s t s .  

Second Tes t  S e r i e s  

The second s e r i e s  employed expanded torque loads (10, 20 and 
30 oz- in . )  and speeds (900 and 1800 rpm) . The summarized r e s u l t s ,  
presented i n  Table V I I ,  i n d i c a t e  t h a t  t he  n i t r i d e  enrichment of 
t hese  gea r s  (Figure 12) causes b r i t t l e n e s s .  Only 4 of the  20 t e s t s  
conducted during t h i s  s e r i e s  r an  720 h r  without  chipping of t he  
n i t r i d e d  case .  I n  each of these  four  t e s t s  the  torque load was 
only 10 oz- in ,  Because of t he  problem of t h e  b r i t t l e  ca se  and t h e  
subsequent chipping of t h e  n i t r i d e d  g e a r s ,  no c o r r e l a t i o n  between 
gear  l i f e ,  load and/or  speed can be made. 

Cycloidal  Gear T e s t s  

The r e s u l t s  obtained from the  c y c l o i d a l  gear t e s t s  (Table X) 
only confirm the  known disadvantages of t h i s  system of gear ing.  
The change i n  c e n t e r  d i s t ance  which r e s u l t s  i n  the  l o s s  of con- 
j u g a t e  a c t i o n  wi th  the  c y c l o i d a l  gear ing system i s  caused by the r -  
m a l  expansion a s  ind ica t ed  by t h e  a d d i t i o n a l  backlash requi red  t o  
ope ra t e .  This  loss  of conjugate  a c t i o n  combined wi th  t h e  l e s s  
p r e c i s e  (unground) gear  p r o f i l e  causes inc reases  i n  both contac t  
and shear  s t r e s s e s .  

CONCLUSIONS AND RECOMMENDATIONS 

I n  t h e  unlubr ica ted  t e s t s ,  one combination of gear  m a t e r i a l s ,  
n i t r i d e d  n i t r a l l o y  and 440C s t a i n l e s s  s t e e l ,  perform w e l l  i n  both 
vacuum and atmosphere environments wi th  con tac t  s t r e s s e s  as  high 
as 50 000 p s i .  This  use capac i ty  i s  of cons iderable  importance 
when one cons iders  t h e  necessary prelaunch t e s t i n g .  N i t r ided  n i -  
t r a l l o y  and carbur ized  C1020 showed promise, b u t  it w a s  e r r a t i c .  

The r e s u l t s  of t he  l u b r i c a t e d  gear  t e s t s  i n d i c a t e  t h a t  wi th  
con tac t  p re s su res  of 40 000 p s i  a t  t he  l u b r i c a t e d  s u r f a c e s ,  one 
cannot s a f e l y  expect a dynamic l i f e  of over 200 h r .  These gea r s  
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l a s t  f o r  over 200 h r  wi th  very l i t t l e  wear and then f a i l  i n  a 
per iod  of l e s s  than 24 h r ,  Obviously, i t  i s  impossible t o  pre-  
d i c t  gear  l i f e  on t h e  b a s i s  of wear a t  one s e t  of cond i t ions ,  

Of t h e  unlubr ica ted  gea r s ,  only those which l a s t  720 h r  a r e  
considered;  wi th  these  the  wear i s  l i n e a r  w i th  time. The wear 
r a t e ,  of course ,  i s  g r e a t e r  a t  t h e  h ighe r  torque loads.  

C l e a r l y ,  f u r t h e r  s t u d i e s  should be conducted. A s  i n  v i r t u a l l y  
a l l  wear experiments t h e r e  i s  cons iderable  s c a t t e r  i n  the  r e l a -  
t i v e l y  good 
the  case depth corresponds t o  t h a t  recommended ( r e f .  18) and, 
accord ingly  poor wear c h a r a c t e r i s t i c s  when the  depth exceeds the 
recommendation. Chipping occurs  i n  the  t h i c k  case .  It i s  the re -  
fo re  recommended t h a t  f u r t h e r  work be devoted t o  the  s tudy of 
n i t r i d e d  case  th ickness  e f f e c t s ,  poss ib ly  w i t h  a mat r ix  o t h e r  than 
n i t r a l l o y .  

a b r a s i v e  wear r e s i s t a n c e  i n  both vacuum and a i r  when 

Fur the r  work should be devoted t o  t h e  f u l l  explana t ion  of t he  
d i f f e r e n t  behavior of Martin hard coated aluminum i n  vacuum and 
a i r ,  p a r t i c u l a r l y  when aluminum e l e c t r i c a l ,  thermal and weight pro- 
p e r t i e s  are  considered.  Also, t h e  mechanical f a i l u r e  e f f e c t s  of 
both Martin hard coated aluminum and n i t r i d e d  n i t r a l l o y  should be 
i n v e s t i g a t e d .  The Her t z i an  s t r e s s e s  and s t r a i n s  exh ib i t ed  wi th in  
the  hard case  and a t  the  j u n c t i o n  of t h e  case  and the  mat r ix  should 
be explained.  I d e a l l y ,  one should be a b l e  t o  p r e d i c t  a t  least  i n  
gene ra l  terms how and why a m a t e r i a l  combination would f a i l  i n  t h e  
mechanical sense of f a i l u r e  e 

The r a t h e r  s u r p r i s i n g  r e s u l t  t h a t  t h r e e  types of s o l i d  f i l m  
l u b r i c a n t  , a l l  MoS2 based, should c a t a s t r o p h i c a l l y  f a i l  i n  less 
than 24 h r  a f t e r  running f o r  more than 200 h r  r e q u i r e s  f u r t h e r  i n -  
v e s t i g a t i o n .  I n  a d d i t i o n ,  t h e  Phosphor bronze MoS2 f i l l e d  gears  
should be i n v e s t i g a t e d  f u r t h e r .  The gear  should be a n a l y t i c a l l y  
designed f o r  i t s  load  cond i t ion ,  which could r e q u i r e  too th  widening. 
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APPENDIX A 
VACUUM GEAR TEST APPARATUS ASSEMBLY PROCEDURE 

Following i s  a d e t a i l e d  assembly procedure f o r  a l l  components 
except t h e  s p l i n e  s h a f t  assembly i n  t h e  master gear  index drum, 
and t h e  t ransducer  and bear ing  assembly i n  t h e  S-shaped master 
gear  indexing bracke t  e 

BASE PLATE AND MASTER GEAR MECHANISM ASSEMBLY 

Assemble a l l  bear ings  ( t o p  and bottom) on t h e  base p l a t e .  
Use s p e c i a l  t h i n  r e t a i n e r  r i n g s  on t h e  bottom bear ings .  
(The top  bear ings  need not  have r e t a i n e r  r i n g s . )  
bear ing  s h i e l d s  on t h e  top  bear ings must be on t h e  top  
s i d e  of t h e  bear ing  block; and on t h e  bottom bea r ings ,  
must be on the  bottom s i d e  of t h e  block. 

The 

Assemble t h e  master gear  indexing drum with s p l i n e  s h a f t  
i n  t h e  c e n t e r  of t h e  base p l a t e .  Note: two of t h e  four  
b o l t s  used i n  assembly are 10-24 with c o l l a r s  around 
them a s  l o c a t i n g  p ins .  The o t h e r  two are 10-32. 

S l i d e  S-shaped master gear  index b racke t  over the  s p l i n e  
s h a f t  w i th  t h e  set  screw i n  t h e  b racke t  f ac ing  t h e  f l a t  
on t h e  s h a f t  (Figure 37) .  Tighten t h e  top  nut  over  t h e  
s h a f t  u n t i l  a l l  p lay  i n  t h e  S-shaped b racke t  i s  removed. 
Rotate  the  b racke t  t o  make sure  i t  indexes without bind- 
ing  on index drum. Tighten t h e  s e t  screw on the  s p l i n e  
s h a f t .  

Assemble the  bear ings  and r e t a i n e r  r i n g  i n  t h e  U-shaped 
master  gear  b racke t s  as shown i n  F igure  38 wi th  bear ing  
s h i e l d s  on t h e  o u t s i d e .  Assemble master gear  s h a f t ,  
master  g e a r ,  spacers  and lock nu t s  a s  shown i n  F igure  38 
and load bear ings  l i g h t l y  t o  remove p l ay  using s p r i n g  
washer. 

Mount both U-shaped b racke t s  (spring-loaded) on S-shaped 
b racke t  as shown i n  F igure  39. Make s u r e  t h e  b racke t  
t r a v e l s  f r e e l y  on the  b a l l  bushings without  binding.  
During assembly, make su re  both master gears  are so 
mounted t h a t  t h e  gear  clamp i s  on t h e  top  s i d e  of t h e  
gear .  Adjust  and f a s t e n  master gears  on the  s h a f t  so 
t h a t  t h e  top  f a c e  of t he  top master gea r  i s  4.569 i n .  
from t h e  t o p  s u r f a c e  of the base  p l a t e ;  and t h e  top  
f a c e  of  t he  bottom master gear  i s  3.264 i n .  from t h e  
top  su r face  of t h e  base p l a t e .  

77 



....... ____ ___ ...~...__ I -~ _.. ., ................ ........ ...-.-. 

U 
00 

Indexing 

Set Screw 

on 

I 

1 ia> Spring Plunger 
I I 

.a 1 
B 

I I 

Shaft 

Index Drum 

Base Plate 

Figure 37 Master Gear Indexing Bracket 



‘ I  

f Lock Nuts 
0.1875 o r  

Re  

Transducer 
Core 

0.25 in .  Spacer Spring Washer 

t a i n e r  R i n  U-Shaped Bracket 

Gear C lamp 

Master Gear 

Bearing Shield 

875 o r  0.25 in .  Spacer/  

Figure 38 Bearing and Retainer Ring Assembly 



00 
0 

Bracket 

t e r  Gear 

Spl ine  Shaf t  J LSpace r  Over B a l l  Bushing Pin 
-0.085 i n .  Thick 

B a l l  Bushing Pin  J 

Figure 39 Master Gear Mounting Assembly 



ASSEMBLY OF FOUR-SQUARE TEST RIGS 

Press f i t  a l l  s i x  bearings i n  the  tes t  r i g  a s  shown i n  Figure 40 
with r e t a i n e r  r ings .  Note: observe sh i e ld  locat ions a s  p e r  
Figure 40. The p a r t s  i n  Figure 41 a r e  i d e n t i f i e d  below. 

1. 
2.  
3. 
4. 
5. 
6 .  
7.  
8. 
9. 
10. 
11 e 

12 .  
13. 
14. 
15 
16. 
1 7  e 
18. 
19 e 

20 e 

21.  
22. 
23. 
24. 
25. 
26. 
27 e 

28. 
29. 
30. 
31. 

Drive s h a f t  coupling 
Collar  0.60 in .  long 
Bearing sh ie ld  d isk  
0.1875 i n .  gear,  Material  I 
Gear clamp 
Gear clamp 
Drive s h a f t  
0.1875 i n .  gear. Mater ia l  I1 
Bearing block, upper r i g h t  
Bearing block, lower r i g h t  
Col lar  0.1875 o r  0.25 in .  long 

v 

Spring washer 
Bushing 
Bushing 
Upper l e f t  sha f t  
Spring was her  
Col la r  0.1875 o r  0.25 in .  long 
Upper l e f t  bearing block 
S p l i t  bushing 
S p l i t  bushing clamp (same a s  gear clamp) 
Gear clamp 
0.125 in .  gear,  Mater ia l  I 
Torque load coupling 
0.125 in .  gear,  Mater ia l  I1 
Gear clamp 
S p l i t  bushing clamp (same a s  gear clamp) 
S p l i t  bushing 
Lower l e f t  bearing block 
Collar  0,875 o r  0.25 i n .  long 
Spring washer 
Shaft ,  lower l e f t  

Assembly of Pa r t s  1 through 13 of Figure 4 1  

Push Shaft  7 through bearing blocks 9 and 10 placing gears 
8 and 4 ,  gear clamps 5 and 6 ,  and d isk  3 i n  pos i t ion .  

Locate sha f t  so  t h a t  i t  extends about 0.5625 in .  outs ide 
upper face of bearing block 9. 

P l a t e  c o l l a r  2 and clamp coupling 1 should be i n  pos i t ion  
a s  shown. 
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F igu re  40 Fron t  V i e w  of Test R i g  
w i t h  Bearing Locat ions 
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Figure  41  Front  V i e w ,  T e s t  Rig Assembly 

83 



S l i p  on c o l l a r  11 a t  upper end. 

S l i p  on sp r ing  washer 12.  

Clamp on bushing 13 a f t e r  compressing spr ing  washer 12  
(one-half  t o t a l  d e f l e c t i o n )  thereby loading both bear ings  e 

Clamp d i s k  3 on s h a f t  so t h a t  c l ea rance  between lower 
f a c e  of d i s k  3 and upper f ace  of lower r i g h t  bear ing  
block 10 i s  only a few thousandths of an  inch. 

Temporarily clamp l i g h t l y  gear  clamps 6 and 5 ,  Exact 
l o c a t i o n  of gears  on s h a f t  7 w i l l  be discussed l a t e r .  

Assembly of P a r t s  14 through 32 of Figure 41  

Push s h a f t  15 through both bear ings  i n  bear ing  block 18. 

S l i p  on s p l i t  bushing 19 and s p l i t  bushing clamp 20 
on s h a f t  15. 

Locate s h a f t  15 so t h a t  i t  extends 0.5625 i n .  ou t s ide  
upper f ace  of bear ing  block 18. 

C l a m p  on s p l i t  bushing clamp 20 ad jacen t  t o  bear ing .  

S l i p  on c o l l a r  1 7 .  

S l i p  on s p r i n g  washer 16. 

S l i p  on bushing 14. 

Apply a x i a l  load on bear ings  by compressing s p r i n g  
washer 16 ( h a l f - f u l l  d e f l e c t i o n )  and lock bushing 14 
i n  p l ace .  

S l i p  on gear  22 and gear  clamp 2 1 .  
load coupling 23 and a t t a c h  i t  temporar i ly  t o  lower 
end of s h a f t  15. 

S l i p  on torque 

Locate gear  24, gear  clamp 25, s p l i t  bushing 27  and 
s p l i t  bushing clamp 26 a s  shown i n  Figure 41 and 
s l i p  s h a f t  32 through bear ings  i n  bear ings  block 28 
and upward a l l  t he  way through t o  coupling 23. 

P o s i t i o n  s h a f t  32 so t h a t  0.5625 i n .  extends ou t -  
s i d e  t h e  lower face  of bear ing  block 28. 

With s h a f t  32 i n  t h i s  p o s i t i o n  and s p l i t  bushing 27  
touching upper bear ings ,  clamp on s p l i t  bushing 
clamp 26 on s h a f t .  
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S l i p  on c o l l a r  29. 

S l i p  on s p r i n g  washer 30, 

S l i p  on bushing 31 and load bear ings  between s p l i t  
bushing 27 and bushing 31  by d e f l e c t i n g  spr ing  
washer t o  h a l f - f u l l  d e f l e c t i o n  and clamp bushing 
31  i n  p l ace .  

Mount coupling 23 on s h a f t  32 leaving  0.9375 i n .  
a x i a l  movement f o r  gear  24. 

Mount coupling 23 on s h a f t  15 leaving  0.9375 i n ,  
a x i a l  movement f o r  gear  22 e 

ASSEMBLY OF FOUR-SQUARE TEST RIGS ON BASE PLATE 

Place  two l o c a t i n g  p i n s  i n  base p l a t e  f o r  t e s t  r i g  
l o c a t i o n .  

P lace  0.285 i n .  c o l l a r  on t o p  of top  bear ing  i n  base 
p l a t e  ( see  F igure  42) .  

P o s i t i o n  and clamp t e s t  r i g  on base p l a t e  wi th  two 
10-32 b o l t s .  Use both l o c a t i n g  p i n s  during mounting 
and remove a l l  loose p ins  a f t e r  mounting so t h a t  
they  do not  f a l l  out  due t o  v i b r a t i o n s  during t e s t .  

S l i p  magnet d r i v e  s h a f t  through t h e  bottom of t h e  
base p l a t e  and a t t a c h  d r i v e  s h a f t  coupling 1 t o  
top end of magnet d r i v e  s h a f t .  

S l i p  on 0.080 i n .  c o l l a r  on t h e  bottom end of 
s h a f t .  

S l i p  on magnet w i th  clamp. 

Push up magnet and clamp magnet on t h e  s h a f t  a t  t h e  
same time pushing coupling 1 toward base p l a t e  so 
t h a t  no a x i a l  p lay  i n  magnet d r i v e  s h a f t  r e s u l t s  
a f t e r  assembly. Note: do not  load bear ings .  

POSITIONING GEARS 

Locate and clamp gear  22 (Figure 41) so t h a t  t h e  
top face  i s  4.574 t0 .002  i n .  above t h e  top face  
of t h e  base p l a t e .  

Locate and clamp gear  24 (Figure 41) so t h a t  t h e  
top  f ace  i s  3.269 20.002 i n .  above t h e  top f a c e  
of t h e  base p l a t e .  
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F igure  42 Magnetic Drive Assembly 
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Visua l ly  locate  and clamp gear  4 (Figure 41) so 
t h a t  t h e  c e n t e r l i n e  of gears  24 and 4 coincide.  

V i sua l ly  l o c a t e  gear  8 (Figure 41) so t h a t  t h e  
c e n t e r l i n e  of gears  2 2  and 8 co inc ide .  

Clamp gear  8 l i g h t l y  on t h e  s h a f t  so tha t  i t  can 
t u r n  f r e e l y ,  b u t  no t  s l i d e  out  of i t s  a x i a l  loca-  
t ion .  

Mate master gea r s  wi th  a l l  t e s t  gears  and v e r i f y  
l o c a t i o n  accuracy.  

LOADING THE TEST RIGS (FIGURE 41) 

Attach  torque wrench t o  upper end of  s h a f t  15 (Fig-  
u re  41) .  

Locak s h a f t  32 (Figure 41) by p lac ing  Allen head 
wrench i n  bushing 3 1  and us ing  t h e  same as  a s top  
arm a g a i n s t  t es t  r i g  frame, while  s h a f t  15 i s  
turned by t h e  torque wrench. 

Apply torque load a s  s p e c i f i e d  on s h a f t  15. During 
load a p p l i c a t i o n  gears  24 and 4 w i l l  remain s t a t i o n a r y  
and gea r  22 w i l l  r o t a t e  w i th  s h a f t  15 while  gear  8 
w i l l  r o t a t e  on s t a t i o n a r y  s h a f t  7 .  

When f u l l  load i s  app l i ed ,  clamp gear  clamp 6 
t i g h t l y  on s h a f t  7. V i sua l ly  check alignment of 
gea r  8 with gear  2 2 .  

CHECKING THE TORQUE SETTING 

Lock s h a f t  32 as discussed ear l ie r .  Gradual ly  apply 
load wi th  torque wrench on shaf t  15. A l l  gears  w i l l  
remain s t a t i o n a r y  during t h i s  load check procedure.  
However, by c a r e f u l  observa t ion  of gea r  22 (Figure 41) 
very small movement of  gear  22 (movement equal  t o  
backlash)  w i l l  be not iced  i n  t h e  v i c i n i t y  of a c t u a l  
to rque .  This  torque value must be w r i t t e n  t2 oz-in.  
of  t h e  s p e c i f i e d  torque.  I f  t h e  torque  i s  not  wi th-  
i n  t o l e r a n c e ,  i t  must be reset .  There w i l l  be no 
movement of  gea r  22 above and below t h e  a c t u a l  load 
value . 
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FINAL CHECK ON ASSEMBLY 

Check a l l  gears  and make su re  t h a t  they a r e  on c o r r e c t  
l o c a t i o n  and mating a g a i n s t  t h e  d e s i r e d  gears .  Record 
gear  l oca t ions  and tes t  r i g  numbers on da ta  s h e e t ,  Ro- 
t a t e  master gear  mechanism and mate master gears  a g a i n s t  
every test  gear  and r o t a t e  t h e  r e spec t ive  t e s t  r i g s  t o  
make su re  they t u r n  without excessive binding. 

G o  over a l l  clamps and rimke su re  a l l  screws a r e  ab- 
s o l u t e l y  t i g h t .  Take vacuum c l e a n e r  and remove a l l  
loose l i n t  (from gloves) from t h e  t e s t  appara tus .  

Prepare the  vacuum system f o r  t e s t ;  i n  o t h e r  words, 
have the  system cleaned out  and new gasket  made and 
VacSorb pumps baked ou t .  

Lower t h e  appara tus  i n t o  the  system very slowly so 
a s  no t  t o  damage s p l i n e  coupling. U s e  t h e  f i x t u r e  
f o r  t h i s  opera t ion .  Locate the  t e s t  r i g s  t o  match 
wi th  t h e i r  r e spec t ive  motors. 

Se t  t h e  master gears  i n  t h e i r  n e u t r a l  p o s i t i o n .  Lo- 
c a t e  a l l  s i g n a l  leads  and make su re  you can i d e n t i f y  
them a s  t o  t h e i r  so lde r ing  l o c a t i o n  on feedthrough. 

Replace top  f l ange  and mount feedthrough a f t e r  ca re -  
f u l l y  so lde r ing  leads  t o  i t .  Make s u r e  the  s o l -  
der ing  i r o n  i s  c l ean  and do not  use any f l u x ;  use 
s p e c i a l  f l u x l e s s  so lde r .  

Before t i g h t e n i n g  up l a r g e  f l a n g e ,  check the  out -  
p u t  from master gear  t ransducers  and t ake  a few 
readings on gea r s .  

Tighten up the  top  f l ange ,  check t h e  output  from 
master  gear  t ransducers  and take a few readings 
on gea r s .  

Tighten up t h e  top f l ange  and pump down t h e  sys-  
tem. 

I n  Figure 42, Item 3 i s  a bellows type coupling. The bellows 
i s  a sp r ing  which t r ansmi t s  a dynamic load t o  t h e  s h a f t .  It  should 
be replaced wi th  a coupling t h a t  minimizes dynamic load t ransmiss ion ,  
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APPENDIX B 
WEAR MEASUREMENT FOR VACUUM TESTS 

The wear measurement technique s e l e c t e d  i s  b a s i c a l l y  s imi l a r  
t o  t h e  approach used by most gear  manufacturers f o r  determinat ion 
of t h e  p r e c i s i o n  of new gears  using master gears .  Th i s  technique 
i s  descr ibed  i n  many gear  textbooks and manufacturer ' s  ca t a logs  

and i s  b e t t e r  known as t o t a l  composite e r r o r  (TCE) c h a r t  recording,  
The t o t a l  composite e r r o r  r ep resen t s  t h e  peak-to-peak v a r i a t i o n  
i n  t h e  c e n t e r  d i s t a n c e  between a t e s t  gea r  and a re ference  master 
gear .  With t h e  use of a s p e c i a l  master gea r ,  we a l s o  monitor wear 
on t h e  t es t  gea r s  by t h e  measurement of changes i n  t h e  c e n t e r  d i s -  
tance.  

On a l l  gear  t e s t s ,  t h e  c r i t e r i o n  f o r  terminat ion i s  based on 
e i t h e r  a t o t a l  e lapsed t i m e  of 720 h r  o r  -10 percent  wear a t  t h e  
p i t c h  r a d i u s .  The gears  used have a t o o t h  th ickness  of 0.0327 i n .  
a t  p i t c h  r a d i u s ,  10 percent  wear r e f e r s  t o  reduct ion  of t h i s  d i -  
mension by 0.0032 i n . ,  o r  a wear of 0.0032 i n .  a t  t h e  p i t c h  r a d i u s .  
I n  o t h e r  words, 1 percent  wear r ep resen t s  a wear of only 0.0003 i n .  
a t  t h e  p i t c h  r a d i u s .  

Assuming a s  a f i r s t  approximation t h a t  a s  a gear  wears t he  
pressure  angle  a t  t h e  p i t c h  l i n e  does not  d e v i a t e  much from the  
o r i g i n a l  20 deg, 10 percent  wear o r  0.0032 i n .  reduct ion i n  too th  
th ickness  would be r e f l e c t e d  a s  a c e n t e r  d i s t a n c e  of 0.0046 i n .  
From p a s t  da ta  i t  i s  known t h a t  te rmina t ion  a t  a change of 0.0055 
i n .  r e s u l t s  i n  b e t t e r  c o r r e l a t i o n .  

The s o l i d - s t a t e  displacement t ransducers  i n  the  master gear  
arrangement provide m i l l i v o l t  s i g n a l s  l i n e a r l y  p ropor t iona l  t o  
displacement,  and t h e  te rmina t ion  c r i t e r i o n  used i n  t h e  output  i n  
m i l l i v o l t s  r a t h e r  than displacement i n  inches .  A s  w i l l  be ex- 
p la ined  l a t e r ,  t he  top t ransducer  g ives  an output  of 120 mV f o r  a 
change of  0.0055 i n . ,  and the  bottom t ransducer  g ives  an  output  
of 110 mV f o r  t h e  same change i n  c e n t e r  d i s t ance .  I n  o t h e r  words, 

an 11 t o  1 2  mV change i n  output  r e p r e s e n t s  -1 percent  wear. 
ducer c a l i b r a t i o n  should be repeated when t h e  vacuum system i s  opened, 

Trans- 
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The r e p e a t a b i l i t y  of t e s t  data has  been e s t a b l i s h e d  a s  f20  mV 
on o v e r a l l  gea r  wear readings ,  which means t h a t  a t  any time the  
gear  wear p r e d i c t i o n  could be i n  e r r o r  by f 2  pe rcen t ,  This  per -  
centage i s  acceptab le  a s  te rmina t ion  c r i t e r i o n  but  inadequate f o r  
accu ra t e  p r e d i c t i o n  of wear r a t e s ,  e s p e c i a l l y  during t h e  e a r l y  
s t a g e  of t he  t e s t .  

I N  STRUMENTAT I O N  

The vacuum t e s t  appara tus  i s  so designed t h a t  a l l  t e s t  gears  
a r e  approximately t h e  same d i s t ance  from t h e  v e r t i c a l  c e n t e r l i n e  
a x i s  of t h e  appara tus .  Furthermore, h a l f  of t h e  t e s t  gears  a r e  
assembled so t h a t  they  are wi th in  t0.002 i n .  i n  one h o r i z o n t a l  plane 
( t o p ) ;  t h e  o t h e r  h a l f  being s i m i l a r l y  pos i t ioned  i n  a second h o r i -  
z o n t a l  plane (bottom). For each p lane ,  t h e r e  i s  a spr ing-loaded 
master gear  arrangement aga in  p r e c i s e l y  assembled so t h a t  during 
wear measurements t h e  master gear mates wi th  each t e s t  gear  w i t h i n  
the  wear t r a c k .  

Two s o l i d - s t a t e  t ransducers  (Sanborn Type 7DCT-050, LVDT Model 
B12-823-2Pll) a r e  mounted i n  the  master gear  mechanism. The top 
t ransducer  records  t h e  displacement of  t h e  master gear  i n  t h e  top  
plane and t h e  bottom t ransducer  correspondingly records displacement 
i n  t h e  bottom plane.  
i npu t .  The two inpu t  l eads  a r e  c o l o r  coded ( r ed  and b l a c k ) .  
t ransducer  has two output  leads  (green and yellow) and t h e  output  
s i g n a l  ( abso lu t e  value)  i s  dependent on t h e  l o c a t i o n  of the  core  
wi th in  t h e  t ransducer .  This  a b s o l u t e  value of t h e  s i g n a l  must no t  
be confused wi th  t h e  m i l l i v o l t  reading r ep resen t ing  wear on t h e  
gea r .  The measured change i n  m i l l i v o l t s  of t h i s  output  s i g n a l  r e -  
p r e s e n t s  t h e  gea r  wear. 

These t ransducers  a r e  c a l i b r a t e d  f o r  a 6 V dc 
Each 

The i n p u t  and output  l eads  from bo th  t ransducers  a r e  brought 
t o  the  e i g h t  p i n  vacuum feedthrough i n  t h e  top f lange  as shown i n  
Figure 4 3  and a r e  e x t e r n a l l y  connected through a c o n t r o l  panel  t o  
the  r eco rde r .  The panel  con ta ins  a b a t t e r y  power source ,  vo l tage  
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adjustment s e l e c t o r  switch f o r  connecting t h e  des i r ed  t ransducer  
t o  t h e  r eco rde r ,  and a power on/off  and shor t ing  swi tch ,  
c u i t  f o r  t he  c o n t r o l  panel  i s  shown i n  F igure  44. 

The c i r -  

METHOD OF MEASUREMENT 

Before a procedure f o r  da ta  t e s t i n g  can be o u t l i n e d ,  i t  i s  
necessary t o  understand t h e  working of t h e  master gear  arrangement. 
The master gears  have a s e t  of t e e t h  comprised of two o r  t h r e e  ad -  
j a c e n t  t e e t h  a t  one l o c a t i o n  of t h e  circumference of a r ec t angu la r  
shape having a t o o t h  th ickness  of 0.0375 i n .  About 180 deg from 
t h i s  l o c a t i o n  t h e r e  i s  another  s e t  of t e e t h ,  completely f i l l e d  i n  so 
t h a t  during wear measurement a t  t h i s  l o c a t i o n  the  master gear  w i l l  
r i d e  on top  of t h e  t e e t h  of t e s t  gears  i n s t ead  of meshing. 
n i c a l  reason f o r  t he  arrangement has been f u l l y  discussed i n  the  
main body of t h e  r e p o r t .  

The tech-  

One measurement i s  taken of t h e  c e n t e r  d i s t ance  when t h e  de- 
s i r e d  square t o o t h  engages wi th  t h e  tes t  gea r ;  another  re ference  
measurement i s  made when t h e  f i l l e d  i n  t e e t h  descr ibed r i d e  on top  
of o r  on t h e  o u t e r  diameter of  the  t e s t  gea r .  The d i f f e r e n c e  be- 
tween these  two measurements i s  the  a c t u a l  o v e r a l l  measurement f o r  
the p a r t i c u l a r  t e s t  gear .  

By recording t h i s  measurement f o r  each gear  p e r i o d i c a l l y  and not ing  
the  changes t h e r e i n ,  the  amount of t o t a l  wear on the  gear  can be 
p red ic t ed  by t h e  following r e l a t i o n s h i p :  

percent  wear = 
. *  

c o e f f i c i e n t  

c a l i b r a t i o n  c o e f f i c i e n t  of top  t ransducer  = 12 mV percent  wear 
c a l i b r a t i o n  c o e f f i c i e n t  of bottom t ransducer  = 11 mV percent  wear 
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The type of recording one should expect can be b e s t  explained 

A s  

by a s e r i e s  o f  i l l u s t r a t i o n s .  L e t  u s  f i r s t  consider  a TCE c h a r t  
where a s tandard  master gear  i s  used t o  check a new tes t  gear .  
t he  t e s t  gear ,  which i s  spring-loaded by a master gea r ,  r o t a t e s ,  
t he  v a r i a t i o n s  i n  c e n t e r  d i s t a n c e  recorded on c h a r t  paper would 
look l i k e  F igure  45a. The s i n e  wave v a r i a t i o n  over t h e  360 deg 
r o t a t i o n  g ives  the  o v e r a l l  runout ,  whereas t h e  small  hash r ep resen t s  
too th-  t 0- t oo th  va r ia t ions  . 

I f  t h e  same master gear  had one o r  two adjacent  t e e t h  e s p e c i a l l y  
made, say of r ec t angu la r  shape, so t h a t  they p e n e t r a t e  a l i t t l e  f u r -  
t h e r  i n  t h e  tes t  gear  compared t o  t h e  remaining t e e t h ,  t h e  curve 
would look l i k e  Figure 45b. 
t e e t h ,  t h e  same master gear  had a couple of t e e t h  f i l l e d  i n ,  the 
curve would look l i k e  Figure 46. The curves produced by t h e  master 
gear  used i n  t h i s  s tudy a r e  q u i t e  s imi la r  t o  those of Figure 46 bu t  
have more peaks produced by more than one s e t  of r ec t angu la r  t e e t h ,  
The top master gear  produces t h e  recordings of Figure 47a; t h e  
bottom gear  corresponds wi th  Figure 47b. The e x t r a  peaks a r e  due 
t o  undes i rab le  r ec t angu la r  t o o t h  widths.  The p o i n t s  of i n t e r e s t  
i n  F igures  47a and b a re :  

I f  i n  a d d i t i o n  t o  t h e  r ec t angu la r  

AB - The m i l l i v o l t  reading where A and B are  
average hash l o c a t i o n s  a t  t h e  s t a r t  of 
t h e  curve.  

EF - A m i l l i v o l t  reading s imi l a r  t o  AB which 
i n  most  cases  w i l l  not  differmore than 
10 mV from AB. Po in t s  E and F a r e  average 
hash l o c a t i o n s  a t  t h e  end of t h e  curve.  

CD - The m i l l i v o l t  reading r ep resen t ing  rec-  
t a n g u l a r  t o o t h  t r a v e l ,  D being t h e  ex- 
treme top  of t h e  peak and C t h e  average 
hash a t  t h a t  l o c a t i o n .  
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(a) Standard Gear 

(b) Modified Gear 

Figure 45 Representative TCE Charts for Standard 
and Modified Gear 

Peak at 
Rectangular 

Teeth 

360° 

Figure 46 Representative Curve for Modified Master Gear 
with both Rectangular and Filled-In Teeth 
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1 ' A  F- I 

Forward Reverse Forward 4 
(a) Upper Modified Master Gear 

Forwar Reverce Forwar 

(b) Lower Modified Master Gear 

Figure 47 Representative Wear Charts Showing Upper 
and Lower Modified Master Gear 
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The o v e r a l l  measurement i n  m i l l i v o l t s  f o r  t h e  p a r t i c u l a r  gear  i s  
t abu la t ed  'as:  

AB + EF + c ----T-- 

Step-By-Step Data Taking Procedure 

A t  t h e  s t a r t  of t e s t  make su re  t h e  master gear  mech- 
anism i s  i n  a n e u t r a l  p o s i t i o n  so t h a t  t he  bottom 
master gear  i s  between F ix tu res  VI1 and V I I I ,  and 
the  top gear  i s  between F i x t u r e s  I V  and 111. 

Learn t o  i d e n t i f y  t h e  gea r s  on each t e s t  f i x t u r e .  
There a r e  four  gea r s  on each t e s t  r i g ,  t w o  on top 
and two on bottom. 
t e s t  apparatus  a t  any one t e s t  r i g ,  two of t h e  f o u r  
gears  w i l l  be i n  clockwise l o c a t i o n  wi th  r e s p e c t  
t o  t h e  c e n t e r  of t h a t  t e s t  r i g ,  and t h e  o t h e r  two 
w i l l  be i n  counterclockwise d i r e c t i o n .  For ex- 
ample, on F i x t u r e  VI1 we can i d e n t i f y  a l l  four  
gea r s  as: top CW, top CCW, bottom CW and bottom 
ccw e 

Looking from top c e n t e r  of t h e  

Turn on t h e  power switch on t h e  c o n t r o l  panel .  

A d j u s t  t h e  supplyr vo l tage  t o  6 V ,  
f 

Se t  t h e  a c  coupler  on the  recorder  t o :  
Time Constant - dc 
High Frequency - 3 
S e n s i t i v i t y  - 100 mV/cm 

Set  t h e  r i g h t  channel on t h e  recorder  a m p l i f i e r  t o :  
H I  - out  
S e n s i t i v i t y  - X I  
Paper Speed - lmm/sec  
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( 7 )  Turn master gears  clockwise ( looking from top)  
one index p o s i t i o n  so t h a t  t op  master gear  mates 
wi th  top CCW gear  on F ix tu re  111, and bottom 
master gea r  mates with bottom CCW gear  on F i x t u r e  
V I I .  

(8) Turn s e l e c t o r  switch on c o n t r o l  pane l  t o  connect 
'bottom master  gear  i n  c i r c u i t  (Pos i t i on  3 ) .  

(9)  Switch recorder  t o  l i m i t i n g  p o s i t i o n .  This  pre-  
vents  t he  pen from overshoot ing a t  any t i m e  and 
causing damage. 

Rotate  magnet on F i x t u r e  VI1 and a d j u s t  zero 
s e t t i n g  knob on the  r i g h t  channel of t h e  r e -  
corder  so t h a t  the pen records  i n  t h e  center of 
t he  paper .  

Try t o  b r i n g  t h e  curve i n t o  correspondence wi th  
t h a t  of Figure 47a by moving t h e  magnet forward 
and backward. 

(10) 

(11) 

(12 )  Once t h e  curve i s  thus i d e n t i f i e d ,  r e a d j u s t  the 
zero s e t t i n g  so t h a t  p o i n t s  B and E f a l l  a long 
the  middle of t he  c h a r t  paper  ( range of r i g h t  
channel) .  

(13) Switch t h e  recorder  t o  "operate" p o s i t i o n .  

(14) Slowly cont inue t o  t u r n  t h e  magnet i n  a f o r -  
ward d i r e c t i o n  u n t i l  po in t  A (Figure 47a) ,  i s  
reached, r eve r se  the  magnet and cont inue turn-  

ing  slowly through po in t s  B ,  C ,  D ,  E ,  and F. 
A t  p o s i t i o n  F r eve r se  t h e  magnet aga in  and t o  
through p o i n t s  F,  E ,  D ,  C, B ,  and A. Repeat 
u n t i l  a s a t i s f a c t o r y  curve i s  obtained.  
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Stop the c h a r t  paper and switch the  c o n t r o l  panel  
s e l e c t o r  t o  connect t h e  top  t ransducer  ( P o s i t i o n  2 ) .  

Repeat Steps (9) through ( 1 4 ) ,  t h i s  time turn ing  
t h e  magnet on F i x t u r e  111 and recording top  CCW 
gear .  

Turn t h e  master gear  one index p o s i t i o n  clockwise 
( looking from top)  so t h a t  t h e  top master gear  
c o n t a c t s  t he  top  CW gear  on F i x t u r e  111, and the  
bottom master gear  simultaneously mates wi th  t h e  
bottom CW gear  of F i x t u r e  V I I .  

Repeat Step (15). 

Repeat Steps (9)  through (14) t h i s  time tu rn ing  
F i x t u r e  111 and recording top CW gear .  

Se t  t he  s e l e c t o r  switch t o  P o s i t i o n  3 and r epea t  
Steps (9)  through (14), ,  t h i s  time r o t a t i n g  Fix-  
t u r e  V I 1  and recording,,  t h e  bottom CW gear .  

Continue indexing t h e  master gear  and recording 
t h e  mated t e s t  gears  u n t i l  180 deg t o t a l  c lock-  
wise r o t a t i o n  i s  reached. 

Return t h e  master gea r s  t o  t h e  n e u t r a l  p o s i t i o n .  

Record da ta  on t h e  remaining h a l f  of t he  gears  
wi th  t h e  master gear  advanced t n  a CCW d i r e c t i o n  
from the  n e u t r a l  p o s i t i o n  u n t i l  180 deg i s  aga in  
reached and r e t u r n  master gea r s  t o  t h e  n e u t r a l  
p o s i t  ion .  
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Tabulation 

With recorder settings as specified in the previous section, 
the output on the chart paper will be 100 mV/cm and tabulation 
must be done according to instructions in the section on measure- 
ment. 

AB + EF + CD 
1 7  

overall measurement in millivolts = 

A s  the gears wear, both dimensions of the above equation will pro- 
gressively increase and may be recorded separately and as a sum. 

A battery is too short-lived to use it for the 6 V supply to 
the LVDT. 
is recommended. 

Instead, a constant voltage power supply of high accuracy 
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APPENDIX C 
VENDORS 

The vendors  from whom impor tan t  components o r  m a t e r i a l s  were 
purchased a re  l i s t e d  below. 

Gears 
(Invo l u t e )  

(Cyc l o  i d a  1) 

Phosphor -Bronze 
( F i l l e d  w i t h  M0S2) 

Bear ings  

Motors 
(Type 2308, 
24 v ac> 

Aero-Gear Machine and Tool  Corp. 
74 I n d u s t r i a  1 Avenue 
L i t t l e  F e r r y ,  N ,  J. 

Gear S p e c i a l i t i e s  Co. 
2635 West Med i l l  Avenue 
Chicago, Ill .  

S-R-C Research Assoc ia t e s  
1 Thomas Road South 
Hawthorne, N ,  J, 

New Hampshire Ball  Bear ing  Co. 
Pe terborough,  N. J. 

Ind iana  Genera l  Corp. 
E l e c t r o  Mechanical D iv i s ion  
Ogelsby, Ill. 
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APPENDIX D 
WEAR 

Wear i s  a phenomenon which i s  cha rac t e r i zed  by t h e  d e t e r i o r a -  
t i o n  of s o l i d  su r faces  when exposed t o  mechanical and/or  chemical 
environments. Degradation of mechanical performance i s  usua l ly  
the  c o n t r o l l i n g  c r i t e r i o n .  Severa l  t h e o r i e s ,  o r  r a t h e r  hypotheses,  
concerning the  phenomenon of w e a r  e x t s t .  Experimental i nves t iga -  
t i o n s  have n e c e s s a r i l y  been conducted wi th  r e l a t i v e l y  simple sys-  
tems, u s u a l l y  pure meta ls ,  no t  without t h e i r  own complexity. Even 
when the  i n v e s t i g a t i o n  i s  c a r r i e d  on i n  an ultrahigh-vacuum system 
the  exposed su r face  d i f f e r s  cons iderably  from t h e  subsurface m a t e r i a l .  

I n  any o t h e r  environment t h e  su r face  i s  exposed t o  t h e  ambient 
atmosphere. I f  t h e  atmosphere i s  l abora to ry  ambient then t h e  s u r -  
f ace  i s  exposed t o  ox ida t ion  i n  t h e  pressure  of water vapor. 
seemingly i n e r t  n i t rogen  atmosphere can permit an i r o n  su r face  t o  
become n i t r i d e d  under some circumstances.  

A 

A survey of t h e  e x i s t i n g  l i t e r a t u r e  i n d i c a t e s  t h a t  t h e  fol lowing 
mechanisms of wear a r e  gene ra l ly  accepted f o r  purposes of a n a l y s i s :  
adhesive wear, ab ras ive  wear, and su r face  f a t i g u e .  These c l a s s i f i -  
c a t i o n s  have been used f o r  convenience of study and f o r  unique r e -  
p r e s e n t a t i o n  of t he  wear process  i n  c o n t r o l l e d  experiments where 
a r t i f i c i a l  boundaries a r e  imposed f o r  s i m p l i f i c a t i o n  o r  t o  study 
t h e  e f f e c t  of a p a r t i c u l a r  parameter. 

Adhesive wear can be analyzed i n  terms of t he  bulk p r o p e r t i e s  
of t h e  m a t e r i a l s ,  i . e . ,  y i e l d  s t r e n g t h ,  modulus of e l a s t i c i t y ,  
apparent  a r ea  of con tac t  and t h e  normal load i n  t h e  manner of 
Bowden and Tabor ( r e f .  5 ) .  It  can a l s o  be inves t iga t ed  i n  terms 
of more parameters.  Rabinowitz presented an a n a l y s i s  based on 
the  su r face  ene rg ie s  of t h e  m a t e r i a l s  ( r e f .  6) e Both ana lyses  
permit one t o  ga in  very meaningful i n s i g h t  i n t o  the  f r i c t i o n  be- 
tween m a t e r i a l  su r f aces  wi th  r e l a t i v e  motion. However these  t h e o r i e s  
cannot be used t o  p r e d i c t  wear. 
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Rubbing can change t h e  bulk phys ica l  p r o p e r t i e s .  The tempera- 
t u r e s  of t h e  con tac t ing  a s p e r i t i e s ,  no t  t h e  bulk temperature,  must 
be used t o  determine the  l o c a l  e f f e c t s  on t h e  bulk p r o p e r t i e s .  
Both t h e  work hardening of t he  m a t e r i a l  and t h e  change i n  con tac t  
s t r e s s  due t o  wear induced changes i n  t h e  su r face  p r o f i l e  must be 
known o r  accounted f o r  i n  the  a n a l y s i s .  

Of t h e  m a t e r i a l s  s e l e c t e d  f o r  t h i s  s tudy ,  4406 s t a i n l e s s  s t e e l ,  
n i t r i d e d  n i t r a l l o y ,  and carbur ized  Cl020 a r e  t h e  only ones used i n  
which a mat r ix  of one b a s i c  metal  ( i r o n )  con tac t s .  With t h e  o t h e r  
materials a meta l  f i l m  coa t ing  of one type o r  another  in te rvenes  
between the  con tac t ing  ma t r i ces .  

One copper based m a t e r i a l  (beryl l ium copper) w a s  included. 
A s  would be p red ic t ed  by e i t h e r  of t h e  mentioned t h e o r i e s ,  copper 
does not  have much wear r e s i s t a n c e .  The m a t e r i a l  combination 
which shows t h e  g r e a t e s t  r e s i s t a n c e  t o  wear -- both i n  vacuum and 
a i r  t e s t i n g  -- i s  t h e  440C through-hardened s t a i n l e s s  s t e e l  and 
n i t r i d e d  n i t r a l l o y .  Both m a t e r i a l s  have a high y i e l d  s t r e s s  and 
a r e  q u i t e  hard .  

The su r face  energy a n a l y s i s  cannot be app l i ed  because these  
ene rg ie s  of t h e  two m a t e r i a l s  a r e  not  known. The f a c t  t h a t  so  
l i t t l e  fundamental da ta  i s  a v a i l a b l e  f o r  complex systems f u r t h e r s  
t he  main d i f f i c u l t i e s  i n  bu i ld ing  an  a n a l y t i c a l  model. We can, 
however, look a t  t h e  range of wear expected us ing  bulk p r o p e r t i e s .  

Let us  now cons ider  t he  formulat ion of a q u a n t i t a t i v e  adhesive 
wear model f o r  determining the  amount of m a t e r i a l  removed during 
t h e  s l i d i n g  a c t i o n .  This  model was i n i t i a l l y  developed by Burwell 
and Strang ( r e f .  7 )  and t h e  d i scuss ion  here  i s  from t h a t  work. It 
should be pointed out  t h a t  l i t t l e  experimental  v e r i f i c a t i o n  e x i s t s  
f o r  t h e  a p p l i c a t i o n  of t h i s  empi r i ca l  model d i r e c t l y  t o  mechanical 
components; however, from t e s t s  on m a t e r i a l s  the  model appears  
v a l i d  under c e r t a i n  cond i t ions  (discussed i n  r e f ,  7) and t h e  ex- 
t ens ion  t o  our  purposes i s  l o g i c a l .  I n  a d d i t i o n ,  t h i s  work repre-  
s e n t s  t h e  b e s t  q u a n t i t a t i v e  wear model a v a i l a b l e  i n  t h e  l i t e r a t u r e  
reviewed t o  d a t e .  
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I n  applying t h e  shear ing  concept of Bowden and Tabor, i t  i s  
recognized t h a t  t h e  t r u e  a r e a  of con tac t  between t h e  s o l i d  su r faces  
i s  i n  r e a l i t y  only a f r a c t i o n  of t h e  apparent  con tac t  a r e a .  I ts  
value can be expressed as: 

where 

A = t r u e  con tac t  a r e a ,  
W = normal load,  

Pm = t h e  y i e l d  p re s su re  producing p l a s t i c  
deformation of t h e  s o f t e r  m a t e r i a l .  

The volume of  m a t e r i a l  removed, can now be expressed as  

V = BAL 

where 

V = volume of m a t e r i a l  removed, 
L = s l i d i n g  d i s t a n c e  
B = a f a c t o r  expressing t h e  p r o b a b i l i t y  of 

removing a s i n g l e  atom of m a t e r i a l .  

Upon e l imina t ing  t h e  a rea  of c o n t a c t ,  t h i s  can be r e w r i t t e n  a s  

v = -  BWL 
Pm 

Expressing t h e  amount of wear i n  terms of depth of m a t e r i a l  removed, 

h = -  BPL 
Pm 

where 

h = average depth of m a t e r i a l  removed, 
P = average normal s t r e s s  over t h e  nominal con tac t  a r e a .  

I n  ob ta in ing  equat ion (2 )  t he  value of P i s  obtained from 
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where 

A. = t h e  apparent  o r  nominal a r e a  of contac t  
between t h e  wearing s u r f a c e s .  

Experimental da t a  show t h a t  t h e  value of B i n  equat ions (1) and (2)  
ranges between 1 x l o q 7  and 5 x l o m 7 *  I n  a d d i t i o n ,  t h e  value of 
p must be modified by a f a c t o r  which depends upon t h e  shapes of m 
t h e  a s p e r i t i e s  on t h e  su r face  of t h e  m a t e r i a l .  Bowden and Tabor 
suggest t h a t  t h e  value of t h i s  f a c t o r  w i l l  have a range between 1 
and 3 .  

For a torque load of 20 oz- in .  t h e  normal s t r e s s  i s  -40 000 
p s i  and i f  we assume t h e  fol lowing approximate va lues ,  

N = 1800 rpm 
n = 55 t e e t h  
B = 5 x 

= (3) 180 000 p s i  Pm 
(1.800/60) x 100 x 60 x 60 N L =  TdK X A t  z . 7  

A t  = 720 h r  

then t h e  depth of m a t e r i a l  removal i s  

h = 18 x l o m 2  i n .  
200 x l o s3  i n .  

and the  a c t u a l  wear i s  9.8 x 10 -4 i n .  o r  - loa3 in .  
r a t i o  of over two o rde r s  of magnitude between the  a c t u a l  wear and 
t h a t  p red ic t ed  by t h e  formula. Of course we must remember t h a t  
t h e  gea r s  e x h i b i t  a combination of r o l l i n g  and s l i d i n g .  

There i s  a 

I n  t h e  a i r  t e s t  t h e  440C s t a i n l e s s  s t e e l  su r f ace  i s  p ro tec t ed  
by an oxide l a y e r ;  however, t he  wear i n  t h e  a i r  t e s t  i s  g r e a t e r  
than t h a t  of t h e  vacuum t e s t .  Except f o r  t h e  gene ra l  comparison 
of a ha rde r ,  s t r o n g e r  m a t e r i a l  r e s i s t i n g  wear r e l a t i v e l y  w e l l  
(440C s t a i n l e s s  s t e e l  vs n i t r i d e d  n i t r a l l o y )  and a s o f t e r  m a t e r i a l  
(bery l l ium copper) having poor wear r e s i s t a n c e ,  t h e r e  i s  l i t t l e  
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c o n - e l a t i o n  on the  b a s i s  of adhesive wear. 
n i t r a l l o y  vs both 440C s t a i n l e s s  s t e e l  and beryl l ium copper) has 
t h e  expected r e s i s t a n c e  t o  wear (Figure 25) .  

Note t h a t  i r o n  ( n i t r i d e d  

I n  the ab ras ive  type of wear, s o l i d  m a t e r i a l  i s  removed from 
a su r face  by being ploughed o r  gouged out  by a much ha rde r  sur face .  
This  s o r t  of wear i s  encouraged when the  hard sur face  i s  a t h i r d  
body, gene ra l ly  a small p a r t i c l e  of g r i t  o r  abras ive .  The shape of 
these  wear p a r t i c l e s  i s  important and i t  has been shown ( r e f .  8) 
t h a t  angular  p a r t i c l e s  of a s o f t  m a t e r i a l  produce more wear than 
round hard p a r t i c l e s .  I t  has a l s o  been pointed out  ( r e f .  9) t h a t  
a good measure of t h e  r e s i s t a n c e  t o  abras ive  wear i s  the amount of 
e l a s t i c  deformation t h a t  t he  sur face  can s u s t a i n .  The l a r g e r  t h e  
e l a s t i c  l i m i t  of s t r a i n ,  t he  b e t t e r  t h e  sur face  should be a b l e  t o  
r e s i s t  damage by an  ab ras ive  o r  harder  su r face .  
l a t i o n s h i p  can be s t a t e d ,  

The fol lowing re- 

E 
- 0  - -  

E l i m  E 
where 

= e l a s t i c  l i m i t  of s t r a i n  E l i m  
= e l a s t i c  l i m i t  of s t r e s s  

ff 
E 

E = m a t e r i a l  modulus of e l a s t i c i t y .  

For a wide range of m a t e r i a l s  
This  can be r e s t a t e d  a s  

Eo H ,  t h e  indenta t ion  hardness ,  

and s i n c e  t h e  e las t ic  s t r a i n  energy p e r  u n i t  volume i s  
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and 

N 2 w  E l i m  - E 

hence 

i s  der ived .  From these  r e l a t i o n s  i t  can be concluded t h a t ,  q u a l i -  
t a t i v e l y ,  t h e  abras ive  wear r e s i s t a n c e  should vary d i r e c t l y  with 
hardness and inve r se ly  wi th  t h e  e l a s t i c  modulus. 

Th i s  d i scuss ion  of adhesive and abras ive  wear suggests  t h a t  
the  wear process  i s  s t rong ly  inf luenced  by t h e  hardness of t he  m a -  
t e r i a l .  This  should be given c l o s e r  examination, s ince  on the  
b a s i s  of the preceding c r i t e r i a ,  an  increase  i n  hardness from Rc34 
t o  Rc60 would only increase  ,by approximately two, specimen wear 
r e s i s t a n c e .  Such a change i n  wear r a t e  w i l l  i n  most  cases  be un- 
no t i ceab le .  However, we must  r e c a l l  t h a t  t o  increase  the  hardness 
of a m a t e r i a l  we have i n  a l l  p r o b a b i l i t y  changed the  chemical 
s t r u c t u r e  of t h e  m a t e r i a l .  Therefore ,  a s  wi th  carbon s t e e l s ,  the  
s t r u c t u r e  can change from i r o n  t o  an i r o n  carb ide  s t r u c t u r e  which 
w i l l  be more i n e r t  and have a lower sur face  energy. Such changes 
a r e  l i k e l y  t o  be of g r e a t e r  b e n e f i t  than increases  i n  hardness .  

When rubbing o r  s l i d i n g  su r faces  a r e  immersed i n  an  environ-  
ment which i s  cor ros ive  o r  ox id i z ing ,  bo th  adhesive and abras ive  
mechanisms tend t o  produce continuous removal of the  products of 
co r ros ion  o r  t h e  oxides  and thus  lead  t o  a genera l  a c c e l e r a t i o n  
of wear. When the  metal  i s  subjec ted  t o  c y c l i c  s t r e s s e s ,  m a t e r i a l s  
of a high energy s t a t e  a r e  c rea t ed  cont inuously along t h e  g l i d i n g  
p lanes  of t h e  c r y s t a l s .  The sur face  f i l m  on the  m a t e r i a l  may a l s o  
break down. Under t h e  a c t i o n  of t h e  stress and s t r a i n ,  however, 
some s e l f - r e p a i r  of t h i s  f i l m  i s  a p t  t o  occure  
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Except f o r  t h e  bery l l ium copper gea r s ,  the wear i n  t h i s  s tudy 
i s  gene ra l ly  i n d i c a t i v e  of abras ion .  According t o  t h e  c r i t e r i a  
d i scussed  i n  the  preceding,  the  gears  should have been much more 
r e s i s t i v e  t o  abras ion .  The q u a l i t a t i v e  explana t ion  f o r  t he  lack  
of wear r e s i s t a n c e  must l i e  i n  the  combination of hard case  and 
r e l a t i v e l y  s o f t  mat r ix .  A microscopic view revea l s  t h e  sur face  
t o  be comprised of peaks and v a l l e y s .  

Abrasive degradat ion of the sur face  i s  the  process  t h a t  usu- 
a l l y  governs wear. 
c u r r e n t  high f r i c t i o n ,  and t h i s  i s  followed by a lower f r i c t i o n  
and lower wear r a t e  opera t ion .  This  i s  the  process  which seems 
t o  have occurred wi th  most of the  gear  sets.  
d rama t i ca l ly  seen i n  the  case  of t h e  MoS2 l ub r i ca t ed  gea r s ,  i n  
which a minor amount of deb r i s  i s  depos i ted  during t h e  f i r s t  few 
hours ,  a long quiescent  per iod  of l i t t l e  o r  no debr i s  formation 
fo l lows ,  and the  l a s t  per iod  i s  cha rac t e r i zed  by extreme debr i s  
product ion.  The fol lowing hypothesis  explores  t h i s  sequence. 

The h ighe r  a s p e r i t i e s  a r e  reduced, wi th  con- 

The process  i s  very 

During the  wear per iod the  c r e s t s  of t he  a s p e r i t i e s  a r e  
f r a c t u r e d .  I n  most cases  t h i s  f r a c t u r i n g  does not have a s i g n i -  
f i c a n t  e f f e c t  on t h e  remainder of t h e  hard coa t ,  however, t h e  base 
of the  hard coa t  i s  weakened a t  some po in t s .  The l a r g e r  t h e  a s -  
per i t ies ,  t h e  more the  hard coa t  i s  weakened. 

During t h e  qu ie scen t  per iod  the  weak p o i n t s  a r e  being re- 
pea ted ly  s t r e s s e d ,  A t  some time t h e  weakened s e c t i o n  f r a c t u r e s ,  
l eav ing  an unsupported s e c t i o n  of t h e  hard coa t  which then begins  
chipping o f f .  Rapid wear fol lows.  

The end of t h e  quiescent  per iod  i s  s igna led  by r ap id  deb r i s  
formation. With t h e  Martin hard coated 7075T6 aluminum a l l o y  
gear  t h e  wear i s  very h igh ,  while i n  t h e  o t h e r s  the  wear i s  s u f f i -  
c i e n t l y  low t o  leave p a r t  of the  l u b r i c a t i n g  f i l m  on the  gear  
too th .  
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The r a p i d  wear i n  t h e  case  of t h e  unlubr ica ted  gears  i s  
similar.  The s o f t  mat r ix  r a p i d l y  wears a f t e r  t he  hard c o a t  i s  
chipped, f i n a l l y  leav ing  t h e  coa t  a s  an incompletely supported 
s h e l l .  The s h e l l  c r acks ,  being incapable  of support ing a ten-  
s i o n  load,  and t h e  wear process  cont inues .  It probably would 
be worthwhile t o  run t h e  gea r s  under a l i g h t  load f o r  a wear-in 
pe r iod ,  then remove and r e l u b r i c a t e  them. 
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